[1]陈铭新,林雄,王建飞.Roper-Suffridge算子和ε-星形映照[J].华侨大学学报(自然科学版),2025,(2):237-240.[doi:10.11830/ISSN.1000-5013.202401003]
 CHEN Mingxin,LIN Xiong,WANG Jianfei.Roper-Suffridge Operators and ε-Starlike Mappings[J].Journal of Huaqiao University(Natural Science),2025,(2):237-240.[doi:10.11830/ISSN.1000-5013.202401003]
点击复制

Roper-Suffridge算子和ε-星形映照()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
期数:
2025年第2期
页码:
237-240
栏目:
出版日期:
2025-03-20

文章信息/Info

Title:
Roper-Suffridge Operators and ε-Starlike Mappings
文章编号:
1000-5013(2025)02-0237-04
作者:
陈铭新 林雄 王建飞
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CHEN Mingxin LIN Xiong WANG Jianfei
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
双全纯映照 Roper-Suffridge算子 ε-星形映照 双曲度量 正定二次型
Keywords:
biholomorphic mapping Roper-Suffridge operator ε-starlike mapping hyperbolic metric positive definite quadratic form
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.202401003
文献标志码:
A
摘要:
应用正定二次型构造比复单位球Bn更广泛的区域,并在该域上利用双曲度量证明了Roper-Suffridge算子保凸性、保星形和保ε-星形性。该结果丰富了已有Roper-Suffridge算子的研究,给出了推广Roper-Suffridge算子的不一样思路。
Abstract:
The positive definite quadratic form is utilized to construct a domain that is wider than the complex unit ball Bn, and preserved the convexity, starlikeness, and ε-starlikeness by Roper-Suffridge operators are proved through the application of hyperbolic metric. This result enriches the existing research on Roper-Suffridge operators and provides a different approach to extending Roper-Suffridge operators.

参考文献/References:

[1] ROPER K A,SUFFRIDGE T J.Convex mappings on the unit ball of Cn[J].Journal d’Analyse Mathématique,1995,65(1):333-347.DOI:10.1007/BF02788776.
[2] GRAHAM I,KOHR G.Univalent mappings associated with the Roper-Suffridge extension operator[J].Journal d’Analyse Mathématique,2000,81(1):331-342.DOI:10.1007/BF02788995.
[3] GONG Sheng,LIU Taishun.On the Roper-Suffridge extension operator[J].Journal d’Analyse Mathématique,2002,88(1):397-404.DOI:10.1007/BF02786583.
[4] WANG Jianfei,LIU Taishun.The Roper-Suffridge extension operator and its applications to convex mappings in C2[J].Transactions of the American Mathematical Society,2018,370(11):7743-7759.DOI:10.1090/tran/7221.
[5] 王建飞,刘太顺,唐笑敏.双曲度量和Roper-Suffridge算子[J].中国科学(数学),2022,52(4):369-380.DOI:10.1360/SSM-2020-0243.
[6] GRAHAM I,HAMADA H,KOHR G,et al.Extension operators for locally univalent mappings[J].Michigan Mathematical Journal,2002,50(1):37-55.DOI:10.1307/mmj/1022636749.
[7] GRAHAM I,HAMADA H,KOHR G.Extension operators and subordination chains[J].Journal of Mathematical Analysis and Applications,2012,386(1):278-289.DOI:10.1016/j.jmaa.2011.07.064.
[8] LIU Taishun,XU Qinghua.Loewner chains associated with the generalized Roper-Suffridge extension operator[J].Journal of Mathematical Analysis and Applications,2006,322(1):107-120.DOI:10.1016/j.jmaa.2005.08.055.
[9] GRAHAM I,HAMADA H,KOHR G.Parametric representation of univalent mappings in several complex variables[J].Canadian Journal of Mathematics,2002,54(2):324-351.DOI:10.4153/CJM-2002-011-2.
[10] FENG Shuxia,LIU Taishun.The generalized Roper-Suffridge extension operator[J].Acta Mathematica Scientia(English Edition),2008,28(1):63-80.DOI:10.1016/S0252-9602(08)60007-7.
[11] LIU Mingsheng,ZHU Yucan.On the extension operator in Banach spaces[J].Advances in Mathematics,2005,34(4):506-508.DOI:10.11845/sxjz.2005.34.04.0506.
[12] 刘名生,朱玉灿.有界完全Reinhardt域上推广的Roper-Suffridge算子[J].中国科学(A辑: 数学),2007,37(10):1193-1206.DOI:10.1360/za2007-37-10-1193.
[13] MUIR J R.A modification of the Roper-Suffridge extension operator[J].Computational Methods and Function Theory,2005,5(1):237-251.DOI:10.1007/BF03321096.
[14] HAMADA H,KOHR G.Roper-Suffridge extension operator and the lower bound for the distortion[J].Journal of Mathematical Analysis and Applications,2004,300(2):454-463.DOI:10.1016/j.jmaa.2004.06.052.
[15] BEARDON F,MINDA D.The hyperbolic metric and geometric function theory[C]//Proceedings of the International Quasiconformal Mappings and Their Applications.New Delhi: Narosa Publishing House,2007:9-56.
[16] GUSTAFSSON B.On the convexity of a solution of Liouville’s equation[J].Duke Mathematical Journal,1990,60(2):303-311.DOI:10.1215/S0012-7094-90-06012-0.

相似文献/References:

[1]胡春英,王建飞.单位球Bn上改进的Roper-Suffridge算子[J].华侨大学学报(自然科学版),2020,41(6):829.[doi:10.11830/ISSN.1000-5013.202006022]
 HU Chunying,WANG Jianfei.Modified Roper-Suffridge Extension Operator on Unit Ball Bn[J].Journal of Huaqiao University(Natural Science),2020,41(2):829.[doi:10.11830/ISSN.1000-5013.202006022]
[2]邵俊霞,胡春英,王建飞.双全纯映射的从属原理及其应用[J].华侨大学学报(自然科学版),2023,44(3):417.[doi:10.11830/ISSN.1000-5013.202205018]
 SHAO Junxia,HU Chunying,WANG Jianfei.Subordination Principle and Its Application of Biholomorphic Mappings[J].Journal of Huaqiao University(Natural Science),2023,44(2):417.[doi:10.11830/ISSN.1000-5013.202205018]

备注/Memo

备注/Memo:
收稿日期: 2024-01-04
通信作者: 陈铭新(1967-),男,副教授,博士,主要从事单复变与多复变函数论的研究。E-mail:chernmx@hqu.edu.cn。
基金项目: 国家自然科学基金资助项目(12071161)
更新日期/Last Update: 2025-03-20