参考文献/References:
[1] 赵洪森,戈宝军,陶大军,等.大型核电汽轮发电机定子内部短路故障时局部电磁力分布研究[J].电工技术学报,2018,33(7):1497-1507.DOI:10.19595/j.cnki.1000-6753.tces.170163.
[2] 孙磊.大型发电机组定子水路堵塞故障分析[J].中国高新技术企业,2016(22):55-57.DOI:10.13535/j.cnki.11-4406/n.2016.22.027.
[3] FANG Ruiming,LIU Zilin,PENG Changqing,et al.Fault diagnosis of inter-turn short circuit in turbogenerator rotor windings based on vibration-current signal fusion[J].Energy Reports,2023,9:316-323.DOI:10.1016/j.egyr.2023.03.019.
[4] LI Xingshuo,LIU Jinfu,BAI Mingliang,et al.An LSTM based method for stage performance degradation early warning with consideration of time-series information[J].Energy,2021,226:120398.DOI:10.1016/j.energy.2021.120398.
[5] PIETRZAK P,WOLKIEWICZ M,ORLOWSKA-KOWALSKA T.PMSM stator winding fault detection and classification based on bispectrum analysis and convolutional neural network[J].IEEE Transactions on Industrial Electronics,2022,70(5):5192-5202.DOI:10.1109/TIE.2022.3189076.
[6] YANG Yulei,ZHANG Shuming,SU Kaisen,et al.Early warning of stator winding overheating fault of water-cooled turbogenerator based on SAE-LSTM and sliding window method[J].Energy Reports,2023,9:199-207.DOI:10.1016/j.egyr.2023.02.076.
[7] CHEN Luonan,LIU Rui,LIU Zhiping,et al.Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers[J].Scientific Reports,2012,2(1):342.DOI:10.1038/srep00342.
[8] FANG Ruiming,WU Minling,SHANG Rongyan,et al.Identifying early defects of wind turbine based on SCADA data and dynamical network marker[J].Renewable Energy,2020,154:625-635.DOI:10.1016/j.renene.2020.03.036.
[9] 张燕,方瑞明.基于油中溶解气体动态网络标志物模型的变压器缺陷预警与辨识[J].电工技术学报,2020,35(9):2032-2041.DOI:10.19595/j.cnki.1000-6753.tces.190295.
[10] 金亮.基于DCS的发电机定子绕组热故障诊断研究[D].厦门: 华侨大学,2021.
[11] ORMAN G K,TüRE N,BALCISOY S,et al.Finding proper time intervals for dynamic network extraction[J].Journal of Statistical Mechanics: Theory and Experiment,2021,2021(3):033414.DOI 10.1088/1742-5468/abed45.
[12] MATSUMORI T,SAKAI H,AIHARA K.Early-warning signals using dynamical network markers selected by covariance[J].Physical Review E,2019,100(5):052303.DOI:10.1103/PhysRevE.100.052303.
[13] CHEN Pei,CHEN E,CHEN Luonan,et al.Detecting early-warning signals of influenza outbreak based on dynamic network marker[J].Journal of Cellular and Molecular Medicine,2019,23(1):395-404.DOI:10.1111/jcmm.13943.
[14] KAMAL M A S,OKU M,HAYAKAWA T,et al.Early detection of a traffic flow breakdown in the freeway based on dynamical network markers[J].International Journal of Intelligent Transportation Systems Research,2020,18:422-435.DOI:10.1007/s13177-019-00199-1.
[15] YANG Kun,XIE Jialiu,XIE Rong,et al.Real-time forecast of influenza outbreak using dynamic network marker based on minimum spanning tree[J].BioMed Research International,2020,2020(1):7351398.DOI:10.1155/2020/7351398.
[16] HUANG Xiaoqi,HAN Chongyin,ZHONG Jiayuan,et al.Low expression of the dynamic network markers FOS/JUN in pre-deteriorated epithelial cells is associated with the progression of colorectal adenoma to carcinoma[J].Journal of Translational Medicine,2023,21(1):45.DOI:10.1186/s12967-023-03890-5.