[1]彭燕,谈漪,陈莉莉.Halin图的无包含边染色[J].华侨大学学报(自然科学版),2024,45(6):812-815.[doi:10.11830/ISSN.1000-5013.202311003]
 PENG Yan,TAN Yi,CHEN Lili.Inclusion-Free Edge Coloring of Halin Graph[J].Journal of Huaqiao University(Natural Science),2024,45(6):812-815.[doi:10.11830/ISSN.1000-5013.202311003]
点击复制

Halin图的无包含边染色()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第6期
页码:
812-815
栏目:
出版日期:
2024-11-15

文章信息/Info

Title:
Inclusion-Free Edge Coloring of Halin Graph
文章编号:
1000-5013(2024)06-0812-04
作者:
彭燕 谈漪 陈莉莉
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
PENG Yan TAN Yi CHEN Lili
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Halin图 无包含边染色 无包含边色数 极小反例图
Keywords:
Halin graph inclusion-free edge coloring inclusion-free chromatic index minimal counterexample graph
分类号:
O157.5
DOI:
10.11830/ISSN.1000-5013.202311003
文献标志码:
A
摘要:
探究给定最大度的Halin图的无包含边色数的上界,通过分析极小反例图的结构,在给定部分子图的染色下,对剩余图进行特殊染色。结果表明:最大度为Δ的Halin图的无包含边色数不超过Δ+2。
Abstract:
The upper bound of the inclusion-free chromatic index of Halin graph with the given maximum degree is explored. By analyzing the structure of the minimal counterexample graph, the special coloring to the remaining graph is done under the coloring of the given partial subgraphs. The results show that the inclusion-free chromatic index of Halin graph with the maximum degree Δ is are not more than Δ+2.

参考文献/References:

[1] PRZYBYLO J,KWASNY J.On the inclusion chromatic index of a graph[J].Journal of Graph Theory,2021,97(1):5-20.DOI:10.1002/jgt.22636.
[2] ZHANG Zhongfu.The Smarandachely adjacent vertex edge coloring of graphs[R].Lanzhou:Lanzhou Jiaotong University,2008:1-13.
[3] GU Jing,WANG Weifan,WANG Yiqiao,et al.Strict neighbor-distinguishing index of subcubic graphs[J].Graphs and Combinatorics,2021,37:355-368.DOI:10.1007/s00373-020-02246-w.
[4] BALISTER P N,GYORI E,LEHEL J,et al.Adjacent vertex distinguishing edge-colorings[J].SIAM Journal on Discrete Mathematics,2007,21(1):237-250.DOI:10.1137/S0895480102414107.
[5] HATAMI H.Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number[J].Journal of Combinatorial Theory Series B,2005,95:246-256.DOI:10.1016/j.jctb.2005.04.002.
[6] AKBARI S,BIDKHORI H,NOSTRATI N.R-strong edge colorings of graphs[J].Discrete Mathematics,2006,306:3005-3010.DOI:10.1016/j.disc.2004.12.027.
[7] ZHANG Lianzhu,WANG Weifan,LIH Kowei.An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph[J].Discrete Applied Mathematics,2014,162:348-354.DOI:10.1016/j.dam.2013.08.038.
[8] JORET G,LOCHET W.Progress on the adjacent vertex distinguishing edge coloring conjecture[J].SIAM Journal on Discrete Mathematics,2020,34(4):2221-2238.DOI:10.1137/18M1200427.
[9] BU Yuehua,LIH KW,WANG Weifan.Adjacent vertex-distinguishing edge-colorings of planar graphs withgirth at least six[J].Discussiones Mathematicae Graph Theory,2011,31(3):429-439.DOI:10.7151/dmgt.1556.
[10] YAN Chengchao,HUANG Danjun,CHEN Dong,et al.Adjacent vertex distinguishing edge colorings of planar graphs with girth at least five[J].Journal of Combinatorial Optimization,2014,28(4):893-909.DOI:10.1007/s10878-012-9569-5.
[11] WANG Weifan,WANG Yiqiao.Adjacent vertex-distinguishing edge coloring of K4-minor-free graphs[J].Applied Mathematics Letters,2011,24(12):2034-2037.DOI:10.1016/j.aml.2011.05.038.
[12] WANG Yi,CHENG Jian,LUO Rong,et al.Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs[J].Journal of Combinatorial Optimization,2016,31:874-880.DOI 10.1007/s10878-014-9796-z.
[13] CHEN Lili,LI Yanyi.A new proof for a result on the inclusion chromatic index of subcubic graphs[J].Axioms,2022,11:33.DOI:10.3390/axioms11010033.
[14] CHEN Lili,LI Yanyi,ZHOU Xiangqian.The inclusion-free edge-colorings of(3,Δ)-bipartite graphs[J].Discrete Applied Mathematics,2022,321:159-164.DOI:10.1016/j.dam.2022.06.039.
[15] GU Jing,WANG Yiqiao,WANG Weifan,et al.Strict neighbor-distinguishing index of K4-minor-free graphs[J].Discrete Applied Mathematics,2023,329:87-95.DOI:10.1016/j.dam.2023.01.017.
[16] JING Puning,WANG Weifan,WANG Yiqiao,et al.Strict neighbor-distinguishing edge coloring of planar graphs[J].Scientia Sinica Mathematica,2023,53(3):523-542.DOI:10.1360/SSM-2021-0178.

备注/Memo

备注/Memo:
收稿日期: 2023-11-03
通信作者: 陈莉莉(1986-),女,副教授,博士,主要从事图染色的研究。E-mail:lily60612@126.com。
基金项目: 中央高校基本科研业务经费专项资金资助项目(ZQN-903)
更新日期/Last Update: 2024-11-20