参考文献/References:
[1] 王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报,2007,2(6):8-26.DOI:10.3969/j.issn.1673-4785.2007.06.002.
[2] LI Jinhai,HUANG Chenchen,QI Jianjun,et al.Three way cognitive concept learning via multi-granularity[J].Information Sciences,2017,378:244-263.DOI:10.1016/j.ins.2016.04.051.
[3] HUANG Zhenhuang,LI Jinjin,QUAN Yuhua.Noise-tolerant fuzzy β covering based multigranulation rough sets and feature subset selection[J].IEEE Transactions Fuzzy Systems,2022,30(7):2721-2735.DOI:10.1109/TFUZZ.2021.3093202.
[4] YAO Yiyu.Three-way decisions with probabilistic rough sets[J].Information Sciences,2010,180:341-353.DOI:10.1016/j.ins.2009.09.021.
[5] 王志焕,游小英,李伟康,等.模糊广义决策信息系统的证据特征与信任约简[J].华侨大学学报(自然科学版),2020,41(5):683-689.DOI:10.11830/ISSN.1000-5013.202003026.
[6] WU Weizhi,LEUNG Yi.Theory and applications of granular labelled partitions in multi-scale decision tables[J].Information Sciences,2011,181:3878-3897.DOI:10.1016/j.ins.2011.04.047.
[7] WU Weizhi,LEUNG Yi.A comparison study of optimal scale combination selection in generalized multi-scale decision tables[J].International Journal of Machine Learning and Cybernetics,2020,11:961-972.DOI:101007/s13042-019-00954-1.
[8] SHE Yanhong,QIAN Zhuohao,HE Xiaoli,et al.On generalization reducts in multi-scale decision tables[J].Information Sciences,2021,555:104-124.DOI:10.1016/j.ins.2020.12.045.
[9] LI Feng,HU Baoqing.Stepwise optimal scale selection for multi-scale decision tables via attribute significance[J].Knowledge-Based Systems,2017,129:4-16.DOI:10.1016/j.knosys.2017.04.005.
[10] HUANG Zhenhuang,LI Jinjin,DAI Weizhong,et al.Generalized multi-scale decision tables with multi-scale decision attributes[J].International Journal of Approximate Reasoning,2019,115:194-208.DOI:10.1016 /j.ijar.2019.09.010.
[11] 陈应生,李进金,林荣德,等.多尺度集值决策信息系统[J].控制与决策,2002,37(2):455-462.DOI:10.13195/j.kzyjc.2020.0882.
[12] 顾沈明,陆瑾璐,吴伟志.广义多尺度决策系统的局部最优粒度选择[J].山东大学学报(理学版),2018,53(8):1-8.DOI:10.6040/j.issn.1671-9352.4.2018.184.
[13] 马周明,黄闽,林国平,等.基于超图的多尺度决策信息系统最优尺度选择[J].闽南师范大学学报(自然科学版),2023,36(4):1-15.DOI:10.16007/j.cnki.issn2095-7122.2023.04.001.
[14] 吴伟志,孙钰,王霞,等.不协调广义多尺度决策系统的局部最优尺度组合选择[J].模式识别与人工智能,2021,34(8):689-700.DOI:10.16451/j.cnki.issn1003-6059.202108002.
[15] YANG Xin,LI Tianrui,LIU Dun.A unified framework of dynamic three-way probabilistic rough sets[J].Information Sciences,2017,420:126-147.DOI:10.1016/j.ins.2017.08.053.
[16] ZHANG Qinghua,LV Gongxun,CHEN Yuhong,et al.A dynamic three-way decision model based on the updating of attribute values[J].Knowledge-Based Systems,2018,142:71-84.DOI:10.1016/j.knosys.2017.11.026.
[17] HE Shifan,WANG Yangming,PAN Xiaohong,et al.A novel behavioral three-way decision model with application to the treatment of mild symptoms of COVID-19[J].Applied Soft Computing,2022,124:109055.DOI:10.1016/j.asoc.2022.109055.
[18] DENG Jiang,ZHAN Jianming,WU Weizhi.A three-way decision methodology to multi-attribute decision-making in multi-scale decision information systems[J].Information Sciences,2021,568:175-198.DOI:10.1016/j.ins.2021.03.058.
[19] LUO Chuan,LI Tianrui,HUANG Yanhong,et al.Updating three-way decisions in incomplete multi-scale information systems[J].Information Sciences,2019,476:274-289.DOI:10.1016/j.ins.2018.10.012.
[20] HAO Chen,LI Jinhai,FAN Min,et al.Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J].Information Sciences,2017,415/416:213-232.DOI:10.1016/j.ins.2017.06.032.
[21] CHEN Yingsheng,LI Jinhai,LI Jinjin,et al.A further study on optimal scale selection in dynamic multi-scale decision information systems based on sequential three-way decisions[J].International Journal of Machine Learning & Cybernetics,2022,13:1505-1515.DOI:10.1007/s13042-021-01474-7.
[22] LI Jinhai,FENG Ye.Update of optimal scale in dynamic multi-scale decision information systems[J].International Journal of Approximate Reasoning,2023,152:310-324.DOI:10.1016/j.ijar.2022.10.020.
[23] CHEN Yingsheng,LI Jinhai,LI Jinjin,et al.Sequential 3WD-based local optimal scale selection in dynamic multi-scale decision information systems[J].International Journal of Approximate Reasoning,2023,152:221-235.DOI:10.1016/j.ijar.2022.10.017.