[1]李静,唐雪平,庄马展,等.厦门杏林湾水库底泥有机质和营养盐的分布特征与来源及污染评价[J].华侨大学学报(自然科学版),2024,45(6):730-739.[doi:10.11830/ISSN.1000-5013.202403028]
 LI Jing,TANG Xueping,ZHUANG Mazhan,et al.Distribution Characteristics, Sources and Pollution Evaluation of Organic Matter and Nutrient Salts in Sediment of Xinglin Bay Reservoir in Xiamen City[J].Journal of Huaqiao University(Natural Science),2024,45(6):730-739.[doi:10.11830/ISSN.1000-5013.202403028]
点击复制

厦门杏林湾水库底泥有机质和营养盐的分布特征与来源及污染评价()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第45卷
期数:
2024年第6期
页码:
730-739
栏目:
出版日期:
2024-11-15

文章信息/Info

Title:
Distribution Characteristics, Sources and Pollution Evaluation of Organic Matter and Nutrient Salts in Sediment of Xinglin Bay Reservoir in Xiamen City
文章编号:
1000-5013(2024)06-0730-10
作者:
李静1 唐雪平2 庄马展2 李飞1 周真明1
1. 华侨大学 土木工程学院, 福建 厦门 361021;2. 厦门市环境科学研究院, 福建 厦门 361021
Author(s):
LI Jing1 TANG Xueping2 ZHUANG Mazhan2 LI Fei1 ZHOU Zhenming1
1. College of Civil Engineering, Huaqiao University, Xiamen 361021, China; 2. Xiamen Institute of Environmental Science, Xiamen 361021, China
关键词:
底泥 有机质 营养盐 杏林湾水库 空间分布 污染评价 来源分析
Keywords:
sediment organic matter nutrient salts Xinglin Bay Reservoir spatial distribution pollution evaluation source analysis
分类号:
X52
DOI:
10.11830/ISSN.1000-5013.202403028
文献标志码:
A
摘要:
以厦门杏林湾水库为研究对象,测定表层底泥中有机质(OM)、总氮(TN)、游离态氮(FN)、可交换态氮(EN)、酸解态氮(HN)、残渣态氮(RN)、总磷(TP)、有机磷(OP)、无机磷(IP)、铁铝结合态磷(NaOH-P)和钙结合态磷(HCl-P)的质量比,分析表层底泥中有机质及营养盐的分布特征和污染状况。结果表明:杏林湾水库底泥中OM,TN和TP的平均质量比分别为49 360.28,1 588.63,1 095.63 mg·kg-1;OM,TN,EN和HN的空间分布呈现从后溪汇入处至入海口处先增加后减小、从九天湖排洪渠和董任排洪渠交汇处至入海口处逐渐减小的特征;TP,IP,NaOH-P和HCl-P的空间分布呈现随水流方向逐渐减小的特征;底泥具有较高氮磷释放风险,易发生富营养化问题,其中,氮主要来源于有机质富集,磷主要来源于上游支流及周边地区含磷农业废水和居民生活污水,OM主要来源于高等植物;氮、磷单项污染指数和综合污染指数整体上均处于重度污染,营养盐污染主要来源于氮,有机指数整体处于尚清洁水平,且底泥整体受到有机氮污染。
Abstract:
Taking Xinglin Bay Reservoir in Xiamen City as the research object, the mass ratios of organic matter(OM), total nitrogen(TN), free nitrogen(FN), exchangeable nitrogen(EN), acid solution nitrogen(HN), residual nitrogen(RN), total phosphorus(TP), organic phosphorus(OP), inorganic phosphorus(IP), iron/aluminum combined phosphorus(NaOH-P)and calcium combined phosphorus(HCl-P)in the surface sediment were measured, and the distribution characteristics and pollution status of organic matter and nutrient salts in the surface sediment were analyzed. The results showed that the average mass ratios of OM, TN and TP in the sediment of Xinglin Bay Reservoir were 49 360.28, 1 588.63 and 1 095.63 mg·kg-1, respec--收稿日期:2024-03-16通信作者:周真明(1981-),男,教授,博士,主要从事底泥/沉积物治理及资源化理论与技术的研究。E-mail:zhenming@hqu.edu.cn。基金项目:国家自然科学基金资助项目(51878300); 福建省厦门市自然科学基金资助项目(3502Z202373041)https://hdxb.hqu.edu.cn/tively; the spatial distribution of OM, TN, EN and HN showed an increase and then a decrease from the confluence of Hou River to the estuary, and a gradual decrease from the confluence of Jiutian Lake and Dongren Drainage Canals to the estuary; the spatial distribution of TP, IP, NaOH-P and HCl-P showed a gradual decrease with the direction of water flow; the sediment had a high risk of nitrogen and phosphorus release, and was prone to eutrophication, of which, nitrogen mainly came from organic matter enrichment, phosphorus mainly came from phosphorus-containing agricultural wastewater and residential sewage from upstream tributaries and the surrounding areas, and OM mainly came from higher plants; nitrogen, phosphorus single pollution index and comprehensive pollution index were in heavy pollution as a whole, nutrient salts pollution mainly came from nitrogen, organic index as a whole was still in clean level, and the sediment as a whole was polluted by organic nitrogen.

参考文献/References:

[1] ZHANG Wenqiang,JIN Xin,MENG Xin,et al.Phosphorus transformations at the sediment-water interface in shallow freshwater ecosystems caused by decomposition of plant debris[J].Chemosphere,2018,201:328-334.DOI:10.1016/j.chemosphere.2018.03.006.
[2] 秦伯强.浅水湖泊湖沼学与太湖富营养化控制研究[J].湖泊科学,2020,32(5):1229-1243.DOI:10.18307/2020.0501.
[3] WEN Shuailong,WANG Hongwei,WU Tao,et al.Vertical profiles of phosphorus fractions in the sediment in a chain of reservoirs in North China: Implications for pollution source, bioavailability, and eutrophication[J].Science of the Total Environment,2020,704:135318.DOI:10.1016/j.scitotenv.2019.135318.
[4] 冀峰,王国祥,韩睿明,等.太湖流域农村黑臭河流表层沉积物营养盐的污染特征[J].水土保持通报,2016,36(3):81-87.DOI:10.13961/j.cnki.stbctb.2016.03.015.
[5] ZHAO Bing,HU Yuansi,YU Haoran,et al.A method for researching the eutrophication and N/P loads of plateau lakes: Lugu Lake as a case[J].The Science of the Total Environment,2023,876:162747.DOI:10.1016/J.SCITOTENV.2023.162747.
[6] 吴龙洋,阎希柱,杨军.杏林湾水库上游水域水华期和非水华期水质变化[J].环境科学导刊,2021,40(2):7-10.DOI:10.13623/j.cnki.hkdk.2021.02.003.
[7] YE Hongmeng,HUANG Changchun,YUAN Xuyin,et al.Morphological characteristics and ecological risk assessment of nitrogen and phosphorus in the sediments of Futunxi watershed in Fujian Province[J].Environmental Monitoring and Assessment,2021,193(6):335.DOI:10.1007/S10661-021-09106-X.
[8] 张沐,任增谊,张曼,等.外秦淮河底泥污染及疏浚效果[J].环境科学,2023,44(7):3945-3956.DOI:10.13227/j.hjkx.202208081.
[9] 原璐彬,邢书语,刘鑫,等.镇江市古运河和金山湖河湖上覆水体和沉积物氮及有机质分布特征及污染评价[J].环境科学,2021,42(7):3186-3197.DOI:10.13227/j.hjkx.202010192.
[10] 刘海,赵国红.霍邱县城湖泊沉积物营养盐分布及污染评价[J].环境科学,2023,44(5):2583-2591.DOI:10.13227/j.hjkx.202206068.
[11] 李芬芳,黄代中,连花,等.洞庭湖及其入湖口表层沉积物氮、磷、有机质的分布及污染评价[J].生态环境学报,2018,27(12):2307-2313.DOI:10.16258/j.cnki.1674-5906.2018.12.017.
[12] LIN Xiaowen,WU Chao,WU Xiaodong,et al.Evaluation of the distribution of N, P and organic matter in sediment and the pollution status of lakes in southeastern Hubei Province, China[J].Journal of Freshwater Ecology,2023,38(1):2244526.DOI:10.1080/02705060.2023.2244526.
[13] 王书锦,刘云根,张超,等.洱海流域入湖河口湿地沉积物氮、磷、有机质分布及污染风险评价[J].湖泊科学,2017,29(1):69-77.DOI:10.18307/2017.0108.
[14] 杜彩丽,黎佳茜,李国文,等.乌梁素海表层沉积物中营养盐和重金属分布特征以及风险评价[J].环境科学,2022,43(12):5598-5607.DOI:10.13227/j.hjkx.202202060.
[15] 万杨,周小峰,叶小凡,等.浙江省温岭湖漫水库沉积物中营养盐分布及风险评价[J].环境化学,2023,42(12):4392-4403.DOI:10.7524/j.issn.0254-6108.2023020906.
[16] 王洪伟,王少明,张敏,等.春季潘家口水库沉积物-水界面氮磷赋存特征及迁移通量[J].中国环境科学,2021,41(9):4284-4293.DOI:10.19674/j.cnki.issn1000-6923.20210222.002.
[17] 刘永九,黄素珍,张璐,等.洪湖国际重要湿地沉积物磷空间分布特征及释放风险[J].环境科学,2021,42(7):3198-3205.DOI:10.13227/j.hjkx.202009090.
[18] 赵丽,王书航,姜霞,等.蠡湖表层沉积物氮矿化过程及其赋存形态变化[J].环境科学,2016,37(12):4626-4632.DOI:10.13227/j.hjkx.201605099.
[19] 李慧,雷沛,李珣,等.天津市北大港湿地沉积物氮磷分布特征及污染评价[J].环境科学学报,2021,41(10):4086-4096.DOI:10.13671/j.hjkxxb.2021.0153.
[20] 方家琪,祁闯,张新厚,等.太湖竺山湾沉积物碳氮磷分布特征与污染评价[J].环境科学,2019,40(12):5367-5374.DOI:10.13227/j.hjkx.201905127.
[21] 尹鹏飞,熊静,贾雨欣,等.杞麓湖表层沉积物营养盐和粒度空间分布及评价[J].环境科学与技术,2023,46(10):32-41.DOI:10.19672/j.cnki.1003-6504.0577.23.338.
[22] 沈宸宇,闫钰,于瑞莲,等.APCS-MLR结合PMF模型解析厦门杏林湾近郊流域沉积物金属来源[J].环境科学,2022,43(5):2476-2488.DOI:10.13227/j.hjkx.202108337.
[23] 邱祖凯,胡小贞,姚程,等.山美水库沉积物氮磷和有机质污染特征及评价[J].环境科学,2016,37(4):1389-1396.DOI:10.13227/j.hjkx.2016.04.025.
[24] 谢伟.城市河湖清淤工程的生态价值: 以厦门市九天湖为例[J].低碳世界,2022,12(7):21-23.DOI:10.16844/j.cnki.cn10-1007/tk.2022.07.049.
[25] 范庆元,王泓,杜春艳,等.洞庭湖典型垸内沟渠沉积物不同形态氮的赋存特征[J].水资源研究,2018,7(3):271-278.DOI:10.12677/JWRR.2018.73030.
[26] LANGE G J D.Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic[J].Marine Geology,1992,109(1/2):95-114.DOI:10.1016/0025-3227(92)90223-5.
[27] YU Juhua,FAN Chengxin,ZHONG Jichen,et al.Evaluation of in situ simulated dredging to reduce internal nitrogen flux across the sediment-water interface in Lake Taihu, China[J].Environmental Pollution,2016,214:866-877.DOI:10.1016/j.envpol.2016.03.062.
[28] SHANG Jingge,ZHANG Lu,SHI Chengjun,et al.Influence of Chironomid Larvae on oxygen and nitrogen fluxes across the sediment-water interface(Lake Taihu, China)[J].Journal of Environmental Sciences,2013,25(5):978-985.DOI:10.1016/S1001-0742(12)60116-8.
[29] LI Jialu,ZUO Qiting.Forms of nitrogen and phosphorus in suspended solids: A case study of Lihu Lake, China[J].Sustainability,2020,12(12):5026.DOI:10.3390/su12125026.
[30] WANG Ting,WANG Kun,JIANG Xia.Influence of rewetting process on distribution and release of phosphorus in sediments of East Lake Dongting[J].Journal of Lake Sciences,2018,30(4):937-947.DOI:10.18307/2018.0407.
[31] 马晓阳,牛凤霞,肖尚斌,等.高磷沉积物有机磷形态分布及释放动力学特征: 以宜昌西北口水库为例[J].中国环境科学,2022,42(1):293-301.DOI:10.19674/j.cnki.issn1000-6923.20210709.009.
[32] 韩年,袁旭音,周慧华,等.洪泽湖入湖河流沉积物有机磷分布特征及外源输入对其形态转化的影响[J].湖泊科学,2020,32(3):665-675.
[33] 张嘉雯,魏健,刘利,等.衡水湖沉积物营养盐形态分布特征及污染评价[J].环境科学,2020,41(12):5389-5399.DOI:10.13227/j.hjkx.202004237.
[34] 梁止水,邓琳,高海鹰,等.南淝河底泥中氮磷空间分布规律及污染评价[J].环境工程,2013,31(增刊1):124-127.DOI:10.13205/j.hjgc.2013.s1.159.
[35] 叶宏萌,杨浩,袁旭音,等.基于流域沉积物氮磷形态的生态风险评价: 以沙溪流域为例[J].环境化学,2020,39(12):3471-3479.DOI:10.7524/j.issn.0254-6108.2019111802.
[36] 郑培儒,李春华,叶春,等.镜泊湖沉积物各形态磷分布特征及释放贡献[J].中国环境科学,2021,41(2):883-890.DOI:10.19674/j.cnki.issn1000-6923.2021.0099.
[37] LONG Ziwei,JI Zehua,PEI Yuansheng.Characteristics and distribution of phosphorus in surface sediments of a shallow lake[J].Journal of Environmental Sciences,2023,124(2):50-60.DOI:10.1016/J.JES.2021.10.012.
[38] QIU Zijian,LIU Qian,ZHANG Ruiqi,et al.Distribution characteristics and pollution assessment of phosphorus forms, TOC, and TN in the sediments of Daye Lake, Central China[J].Journal of Soils and Sediments,2022,23(2):1023-1036.DOI:10.1007/S11368-022-03398-3.
[39] 向速林,楚明航,刘丽贞,等.鄱阳湖流域赣江(南昌段)沉积物磷赋存形态特征及释放风险分析[J/OL].湖泊科学,2024,36(4):1-11.http://kns.cnki.net/kcms/detail/32.1331.p.20240311.2228.002.html.
[40] 雷雨梦,刘云根,梁启斌,等.云南不同类型农村沟渠底泥磷形态分布特征及风险评价[J].环境科学与技术,2017,40(3):161-166.DOI:10.3969/j.issn.1003-6504.2017.02.026.
[41] RYDIN E.Potentially mobile phosphorus in Lake Erken sediment[J].Water Research,2000,34(7):2037-2042.DOI:10.1016/S0043-1354(99)00375-9.
[42] SHOJA H,RAHIMI G,FALLAH M,et al.Investigation of phosphorus fractions and isotherm equation on the lake sediments in Ekbatan Dam(Iran)[J].Environmental Earth Sciences,2017,76(6):1-15.DOI:10.1007/s12665-017-6548-2.
[43] SHEN Dali,HUANGSaihua,ZHANG Yiping,et al.The source apportionment of N and P pollution in the surface waters of lowland urban area based on EEM-PARAFAC and PCA-APCS-MLR[J].Environmental Research,2021,197(13):111022.DOI:10.1016/J.ENVRES.2021.111022.
[44] DAN F S,LIU Sumei,YANG Bin.Geochemical fractionation,potential bioavailability and ecological risk of phosphorus in surface sediments of the Cross River estuary system and adjacent shelf, South East Nigeria(West Africa)[J].Journal of Marine Systems,2020,201(C):103244.DOI:10.1016/j.jmarsys.2019.103244.
[45] WANG Xiaoli.Phosphorus fractionation and bio-availability in surface sediments from the middle and lower reaches of the Yellow River[J].Procedia Environmental Sciences,2012,12:379-386.DOI:10.1016/j.proenv.2012.01.293.
[46] 高春梅,朱珠,王功芹,等.海州湾海洋牧场海域表层沉积物磷的形态与环境意义[J].中国环境科学,2015,35(11):3437-3444.DOI:10.3969/j.issn.1000-6923.2015.11.031.
[47] 余辉,张文斌,卢少勇,等.洪泽湖表层底质营养盐的形态分布特征与评价[J].环境科学,2010,31(4):961-968.DOI:10.13227/j.hjkx.2010.04.003.
[48] 刘伟,褚一凡,谭启洋,等.鄱阳湖西侧周边农村水塘夏季表层沉积物氮、磷、有机质分布特征及评价[J].湖泊科学,2023,35(1):192-202.DOI:10.18307/2023.0113.

相似文献/References:

[1]唐雪平,李静,庄马展,等.厦门集美杏林湾水库底泥重金属污染状况评价[J].华侨大学学报(自然科学版),2024,45(2):262.[doi:10.11830/ISSN.1000-5013.202312036]
 TANG Xueping,LI Jing,ZHUANG Mazhan,et al.Evaluation of Heavy Metal Pollution Status of Sediment in Xinglin Bay Reservoir Jimei Xiamen[J].Journal of Huaqiao University(Natural Science),2024,45(6):262.[doi:10.11830/ISSN.1000-5013.202312036]

备注/Memo

备注/Memo:
收稿日期: 2024-03-16
通信作者: 周真明(1981-),男,教授,博士,主要从事底泥/沉积物治理及资源化理论与技术的研究。E-mail:zhenming@hqu.edu.cn。
基金项目: 国家自然科学基金资助项目(51878300); 福建省厦门市自然科学基金资助项目(3502Z202373041)https://hdxb.hqu.edu.cn/
更新日期/Last Update: 2024-11-20