[1]李俊,陈铭新,王建飞.多重调和映射的同向两点Schwarz引理及应用[J].华侨大学学报(自然科学版),2023,44(2):264-268.[doi:10.11830/ISSN.1000-5013.202110011]
 LI Jun,CHEN Mingxin,WANG Jianfei.Same Direction Two-Point Schwarz Lemma for Pluriharmonic Mappings and Application[J].Journal of Huaqiao University(Natural Science),2023,44(2):264-268.[doi:10.11830/ISSN.1000-5013.202110011]
点击复制

多重调和映射的同向两点Schwarz引理及应用()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第44卷
期数:
2023年第2期
页码:
264-268
栏目:
出版日期:
2023-03-14

文章信息/Info

Title:
Same Direction Two-Point Schwarz Lemma for Pluriharmonic Mappings and Application
文章编号:
1000-5013(2023)02-0264-05
作者:
李俊 陈铭新 王建飞
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
LI Jun CHEN Mingxin WANG Jianfei
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和映射 多重调和映射 Schwarz引理 边界Schwarz引理
Keywords:
harmonic mappings pluriharmonic mappings Schwarz lemma boundary Schwarz lemma
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.202110011
文献标志码:
A
摘要:
建立单位圆盘D到单位球BN上调和映射的同向两点Schwarz引理,给出高维单位球之间的多重调和映射的同向两点Schwarz引理,并将单位圆盘调和映射的Pavlovic的结果推广到高维多重调和映射.作为应用,得到单位球上多重调和函数的边界Schwarz引理.
Abstract:
Establish the same direction two-point Schwarz lemma for harmonic mappings from unit disk D to the unit ball BN, the same direction two-point Schwarz lemma for pluriharmonic mappings between high-dimensional unit balls is given, and Pavlovic’s result of harmonic mappings on the unit disk is extended to high-dimensional pluriharmonic mappings. As an application, the boundary Schwarz lemma of pluriharmonic functions on the unit ball is obtained.

参考文献/References:

[1] HEINZ E.On one-to-one harmonic mappings[J].Pacific Journal of Mathematics,1959,9(1):101-105.DOI:10.2140/pjm.1959.9.101.
[2] PAVLOVIC M.Introduction to function spaces on the disk[M].Belgrade:Matematicki Institut SANU,2004.DOI:10.13140/RG.2.1.3215.5687.
[3] LIU Yang,DAI Shaoyu,PAN Yifei.Boundary Schwarz lemma for pluriharmonic mappings between unit balls[J].Journal of Mathematical Analysis and Applications,2016,433(1):487-495.DOI:10.1016/j.jmaa.2015.08.008.
[4] DAI Shaoyu,CHEN Huaihui,PAN Yifei.The high order Schwarz-Pick lemma on complex Hilbert balls[J].Science China Mathematics,2010,53(10):2649-2656.DOI:10.1007/s11425-010-3119-3.
[5] CHEN Huaihui.The Schwarz-Pick lemma for planar harmonic mappings[J].Science China Mathematics,2011,54(6):1101-1118.DOI:10.1007/s11425-011-4193-x.
[6] LIU Taishun,WANG Jianfei,TANG Xiaomin.Schwarz lemma at the boundary of the unit ball in Cn and its applications[J].Journal of Geometric Analysis,2015,25(3):1890-1914.DOI:10.1007/s12220-014-9497-y.
[7] TANG Xiaomin,LIU Taishun,LU Jin.Schwarz lemma at the boundary of the unit polydisk in Cn[J].Science in China Series A:Mathematics,2015,58(8):1639-1652.DOI:10.1007/s11425-015-4975-7.
[8] LIU Yang,CHEN Zhihua.Schwarz-Pick estimates for holomorphic mappings from the polydisk to the unit ball[J].Journal of Mathematical Analysis and Applications,2011,376(1):123-128.DOI:10.1016/j.jmaa.2010.10.040.
[9] KRANTZ S.The Schwarz lemma at the boundary[J].Complex Variables and Elliptic Equations,2011,56(5):455-468.DOI:10.1080/17476931003728438.
[10] XU Zhenghua.Schwarz lemma for pluriharmonic functions[J].Indagationes Mathematicae,2016,27(4):923-929.DOI:10.1016/j.indag.2016.06.002.
[11] PARTYKA D,ZAJAC J.The Schwarz type inequality for harmonic mappings of the unit disc with boundary normalization[J].Complex Analysis and Operator Theory,2015,9(1):213-228.DOI:10.1007/s11785-014-0398-7.
[12] GARNETT J.Bounded analytic functions[J].The American Mathematical Monthly,1981,89(7):1-7.DOI:10.2307/2321411.
[13] GRAUERT H.Methods of the theory of functions of several complex variables[M].Berlin:Springer,1991.DOI:10.1007/978-3-642-76709-8_8.
[14] AHLFORS L.Conformal invariants: Topics in geometric function theory[M].New York:American Mathematical Society,1973.DOI:10.1016/S0246-0203(01)01089-5.
[15] WANG Xiantao,ZHU Jianfeng.Boundary Schwarz lemma for solutions to Poisson’s equation[J].Journal of Mathematical Analysis and Applications,2018,463(2):623-633.DOI:10.1016/j.jmaa.2018.03.043.
  

备注/Memo

备注/Memo:
收稿日期: 2021-10-11
通信作者: 陈铭新(1967-),男,副教授,博士,主要从事单复变和多复变函数论的研究.E-mail:chernmx@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(12071161); 福建省自然科学基金资助项目(2020J01073)
更新日期/Last Update: 2023-03-20