[1]陈铭新,李程鹏,王建飞.半空间上的Bohr型不等式[J].华侨大学学报(自然科学版),2022,43(5):693-697.[doi:10.11830/ISSN.1000-5013.202106014]
 CHEN Mingxin,LI Chengpeng,WANG Jianfei.Bohr Type Inequalities in Half Space[J].Journal of Huaqiao University(Natural Science),2022,43(5):693-697.[doi:10.11830/ISSN.1000-5013.202106014]
点击复制

半空间上的Bohr型不等式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第5期
页码:
693-697
栏目:
出版日期:
2022-09-13

文章信息/Info

Title:
Bohr Type Inequalities in Half Space
文章编号:
1000-5013(2022)05-0693-05
作者:
陈铭新 李程鹏 王建飞
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
CHEN Mingxin LI Chengpeng WANG Jianfei
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
解析函数 调和映射 Bohr半径 Bohr型不等式
Keywords:
analytic function harmonic mapping Bohr radius Bohr type inequalities
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.202106014
文献标志码:
A
摘要:
研究半空间P={z∈C:Re(z)-1}?D上的Bohr型不等式,建立无界单连通域P上解析函数族的Bohr半径.将解析函数族的Bohr型不等式推广到调和映射的情形,得到调和映射上的Bohr型不等式.
Abstract:
Bohr type inequalities defined on the half space P={z∈瘙綇:Re(z)>-1}?D are stdudied, Bohr radius of the analytic functions class on the unbounded simply connected domain P are established. Also in this paper, Bohr type inequalities of analytic function class are extended to the case of harmonic mapping class, and Bohr type inequalities on harmonic maps are obtained.

参考文献/References:

[1] BOHR H.A theorem concerning power series[J].Proceedings of the London Mathematical Society,1914,13(s2):1-5.DOI:10.1112/plms/s2-13.1.1.
[2] FOURNIER R,RUSCHEWEYH S.On the Bohr radius for simply connected plane domains[J].CRM Proceedings and Lecture Notes,2010,51:165-171.DOI:10.1090/crmp/051/12.
[3] EVDORIDIS S,PONNUSAMY S,RASILA A.An improved Bohr’s inequality for shifted disks[J].Results in Mathematics,2021,76(14):1-15.DOI:10.1007/s00025-020-01325-x.
[4] MUHANNAY A.Bohr’s phenomenon in subordination and bounded harmonic classes[J].Complex Variables and Elliptic Equations,2010,55(11):1071-1078.DOI:10.1080/17476931003628190.
[5] ALKHALEEFAH S,KAYUMOV I R,PONNUSAMY S.On the Bohr inequality with a fixed zero coefficient[J].Proceedings of the American Mathematical Society,2019,147:5263-5274.DOI:10.1090/proc/14634.
[6] AIZENBERG L.Generalization of results about the Bohr radius for power series[J].Studia Mathematica,2007,180(2):161-168.DOI:10.4064/sm180-2-5.
[7] KAYUMOV I R,PONNUSAMY S.Bohr’s inequality for analytic functions with lacunary series and harmonic functions[J].Journal of Mathematical Analysis and Applications,2018,465(2):857-871.DOI:10.1016/j.jmaa.2018.05.038.
[8] 李程鹏,李锦成.一类解析函数的Bohr定理[J].华侨大学学报(自然科学版),2021,42(4):547-550.DOI:10.11830/ISSN.1000-5013.202011005.
[9] KAYUMOV I R,PONNUSAMY S.Bohr radius for locally univalent harmonic mappings[J].Mathematische Nachrichten,2018,291(11/12):1757-1768.DOI:10.1002/mana.201700068.
[10] PONNUSAMY S,VIJAYAKUMAR R,WIRTHS K J.New inequalities for the coefficients of unimodular bounded functions[J].Results in Mathematics,2020,75(3):1-11.DOI:10.1007/s00025-020-01240-1.
[11] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bulletin of the American Mathematical Society,1936,42:689-692.DOI:10.1090/S0002-9904-1936-06397-4.
[12] LIU Taishun,WANG Jianfei.An absolute estimate of the homogeneous expansions of holomorphic mappings[J].Pacific Journal of Mathematics,2007,231(1):155-166.DOI:10.2140/pjm.2007.231.155.
[13] AIZENBERG L.Generalization of results about the Bohr radius for power series[J].Studia Mathematica,2007,180(2):161-168.DOI:10.4064/sm180-2-5.
[14] WANG Jianfei,LIU Taishun.Bohr’s inequality on the unit Ball Bn[J].Chinese Quarterly Journal of Mathematics,2007,22(2):159-165.DOI:1002-0462(2007)02-0159-07.
[15] LIU Xiaosong,LIU Taishun,ZHANG Wenjun.Refined Bohr’s theorem for holomorphic mappings in several complex variables[J].Scientia Sinica Mathematica,2021,51(4):591-604.DOI:10.1360/SCM-2019-0052.

相似文献/References:

[1]白晓瑾,石擎天.解析函数的Bohr型半径估计[J].华侨大学学报(自然科学版),2019,40(6):817.[doi:10.11830/ISSN.1000-5013.201901058]
 BAI Xiaojin,SHI Qingtian.Estimations of Bohr Type Radii for Analytic Functions[J].Journal of Huaqiao University(Natural Science),2019,40(5):817.[doi:10.11830/ISSN.1000-5013.201901058]
[2]王朝祥.Bloch常数的下界估计[J].华侨大学学报(自然科学版),2022,43(3):416.[doi:10.11830/ISSN.1000-5013.202012036]
 WANG Chaoxiang.Estimation of Lower Bound for Bloch Constant[J].Journal of Huaqiao University(Natural Science),2022,43(5):416.[doi:10.11830/ISSN.1000-5013.202012036]

备注/Memo

备注/Memo:
收稿日期: 2021-06-07
通信作者: 王建飞(1978-),男,教授,博士,主要从事单复变和多复变函数论的研究.E-mail:jfwang@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(12071161); 福建省自然科学基金资助项目(2020J01073); 华侨大学高层次人才科研启动项目(19BS102)
更新日期/Last Update: 2022-09-20