[1]陈文亮,王明元,李雨晴,等.不同香蕉品种苗期钾效率差异性分析[J].华侨大学学报(自然科学版),2022,43(4):481-488.[doi:10.11830/ISSN.1000-5013.202105041]
 CHEN Wenliang,WANG Mingyuan,LI Yuqing,et al.Difference Analysis of Potassium Efficiency of Different Banana Varieties at Seedling Stage[J].Journal of Huaqiao University(Natural Science),2022,43(4):481-488.[doi:10.11830/ISSN.1000-5013.202105041]
点击复制

不同香蕉品种苗期钾效率差异性分析()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第43卷
期数:
2022年第4期
页码:
481-488
栏目:
出版日期:
2022-07-18

文章信息/Info

Title:
Difference Analysis of Potassium Efficiency of Different Banana Varieties at Seedling Stage
文章编号:
1000-5013(2022)04-0481-08
作者:
陈文亮12 王明元12 李雨晴12 林萍12 陈科霖12 刘建福12
1. 华侨大学 园艺科学与工程研究所, 福建 厦门 361021;2. 华侨大学 化工学院, 福建 厦门 361021
Author(s):
CHEN Wenliang12 WANG Mingyuan12 LI Yuqing12LIN Ping12 CHEN Kelin12 LIU Jianfu12
1. Institute of Horticultural Science and Engineering, Huaqiao University, Xiamen 361021, China; 2. College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
关键词:
香蕉 基因型 钾效率 苗期
Keywords:
banana genotype potassium efficiency seedling stage
分类号:
Q945.12
DOI:
10.11830/ISSN.1000-5013.202105041
文献标志码:
A
摘要:
以国内主栽的8个香蕉品种为材料,设计低钾和正常钾水培试验,研究株高、干质量、叶绿素质量比等指标的变化.结果表明:低钾处理可以显著降低‘巴西蕉’的干质量,‘南天黄’的干质量最小,‘金粉1号’的干质量最大;两种钾水平处理中,‘金粉1号’的叶绿素质量比最高,几乎不受低钾胁迫影响,‘南天黄’的叶绿素质量比最低;两种钾水平处理中,‘金粉1号’的根系指标最高,‘南天黄’的根体积最小,‘巴西蕉’的根总吸收面积和根总活跃吸收面积最小;同一处理中,8个香蕉品种的地上部钾质量比差异不明显,‘桂蕉1号’的地下部钾质量比最高,‘金粉1号’的地上部钾积累量最大,‘南天黄’的地上部钾积累量最小;8个香蕉品种的地上部钾效率系数为0.44~0.97,2个品种的地上部钾效率系数较小,3个品种的地上部钾效率系数居中,3个品种的地上部钾效率系数较大;初步确定‘金粉1号’‘桂蕉1号’为钾高效基因型,‘威廉斯’‘广东粉蕉’‘桂蕉6号’‘红蕉’为钾中效基因型,‘南天黄’‘巴西蕉’为钾低效基因型.
Abstract:
Using eight mainly planted domestic banana varieties as materials, low potassium and normal potassium hydroponic experiments are designed to study the changes of plant height, dry weight, chlorophyll mass ratio and other indicators. The results show that low potassium treatment can significantly reduce the dry weight of ‘Baxijiao’, the dry weight of ‘Nantianhuang’ is lowest, and the dry weight of ‘Jinfen No.1’ is highest. In the two potassium levels treatment, the chlorophyll mass ratio of ‘Jinfen No.1’ is highest, which is almost not affected by low potassium stress, and the chlorophyll mass ratio of ‘Nantianhuang’ is lowest. In the two potassium levels treatment, the root indexes of ‘Jinfen No.1’ are highest, the root volume of ‘Nantianhuang’ is lowest, and the total root absorption area and total active root absorption area of ‘Baxijiao’ are both lowest. In the same treatment, there is no significant difference in aboveground potassium mass ratio among the eight banana varieties, the underground potassium mass ratio of ‘Guijiao No.1’ is highest, the aboveground potassium accumulation of ‘Jinfen No.1’ is highest, and the aboveground potassium accumula-tion of‘Nantianhuang’ is lowest. The aboveground potassium efficiency coefficients of eight banana varieties are between 0.44 to 0.97, two varieties are lower, three varieties are in the middle, and three varieties are higher. It is preliminarily determined that ‘Jinfen No.1’ and ‘Guijiao No.1’ are potassium efficient genotypes, ‘Williams’ ‘Guangdong Fenjiao’ ‘Guijiao No.6’ and ‘Hongjiao’ are potassium medium efficient genotypes, and ‘Nantianhuang’ and ‘Baxijiao’ are potassium inefficient genotypes.

参考文献/References:

[1] JU Huiyan,LIU Junfeng,GAO Jie,et al.Potassium uptake characteristics of two maize hybrids and their parents under the stress from a low amount of potassium[J].Journal of Plant Nutrition,2014,37(1):123-135.DOI:10.1080/01904167.2013.849733.
[2] TAGLIANI A,TRAN A N,NOVI G,et al.The calcineurin beta-like interacting protein kinase CIPK25 regulates potassium homeostasis under low oxygen in Arabidopsis[J].Journal of Experimental Botany,2020,71(9):2678-2689.DOI:10.1093/jxb/eraa004.
[3] ZHAO Xiaoming,LIU Yang,LIU Xin,et al.Comparative transcriptome profiling of two tomato genotypes in response to potassium-deficiency stress[J].International Journal of Molecular Sciences,2018,19(8):2402.DOI:10.3390/ijms19082402.
[4] HOU Wenfeng,TR?NKNER M,LU Jianwei,et al.Diagnosis of nitrogen nutrition in rice leaves influenced by potassium levels[J].Frontiers in Plant Science,2020,11:165.DOI:10.3389/fpls.2020.00165.
[5] WANG Yi,WU Weihua.Regulation of potassium transport and signaling in plants[J].Current Opinion in Plant Biology,2017,39:123-128.DOI:10.1016/j.pbi.2017.06.006.
[6] CHEN Guang,LI Chaolei,GAO Zhenyu,et al.Driving the expression of RAA1 with a drought-responsive promoter enhances root growth in rice, its accumulation of potassium and its tolerance to moisture stress[J].Environmental and Experimental Botany,2018,147:147-156.DOI:10.1016/j.envexpbot.2017.12.008.
[7] CHAKRABORTY K,BHADURI D,MEENA H N,et al.External potassium(K(+))application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars[J].Plant Physiology and Biochemistry,2016,103:143-153.DOI:10.1016/j.plaphy.2016.02.039.
[8] 吴宇佳,张文,符传良,等.不同基因型香蕉苗期钾效率差异的初步研究[J].西南农业学报,2014,27(4):1587-1590.DOI:10.16213/j.cnki.scjas.2014.04.067.
[9] JOHN K S,SREEKUMAR J,SHEELA M N,et al.Pre evaluation of cassava(manihot esculenta crantz)germplasm for genotypic variation in the identification of K efficient genotypes through different statistical tools[J].Physiology and Molecular Biology of Plants,2020,26(9):1911-1923.DOI:10.1007/s12298-020-00867-2.
[10] 姜存仓,袁利升,王运华,等.不同基因型棉花苗期钾效率差异的初步研究[J].华中农业大学学报,2003,22(6):564-568.DOI:10.13300/j.cnki.hnlkxb.2003.06.011.
[11] KHAN A,KHUAWER M Y,SHIRAZI M U,et al.Differential responses of wheat genotypes for potassium uptake and utilization efficiency under adequate and deficient potassium levels in solution culture[J].Pakistan Journal of Botany,2017,49(6):2153-2159.
[12] 张宁,郭荣发.不同钾效率水稻品种苗期的根系形态与生理指标[J].江苏农业学报,2014,30(4):716-720.DOI:10.3969/j.issn.1000-4440.2014.04.004.
[13] FLORES R A,ANDRADE A F,CASAROLI D,et al.Potassium fertilization in sugarcane ratoon yield grown in a tropical region[J].Communications in Soil Science and Plant Analysis,2020,51(7):896-910.DOI:10.1080/00103624.2020.1744622.
[14] ERIKA O E,EMMA T S,DIRGA S S.The effect of Npk+Mg fertilizer application on potassium availability, potassium uptake, and yield of sweet corn(zea mays saccharata sturt)in inceptisols[J].International Journal of Energy and Environmental Science,2020,5(3):47-50.DOI:10.11648/j.ijees.20200503.11.
[15] SAIMA L,SHAHID U,PEER S,et al.Protective effect of 24-epibrassinolide on barley plants growing under combined stress of salinity and potassium deficiency[J].Journal of Plant Growth Regulation,2020,39(4):1543-1558.DOI:10.1007/s00344-020-10163-8.
[16] 顾骏飞,周振翔,李志康,等.水稻低叶绿素含量突变对光合作用及产量的影响[J].作物学报,2016,42(4):551-560.DOI:10.3724/SP.J.1006.2016.00551.
[17] 饶宝蓉.香蕉不同基因型间钾素营养效率差异性研究[D].海口:海南大学,2010.
[18] 叶芝兰.大麦响应低钾胁迫的基因型差异及其耐性机制研究[D].杭州:浙江大学,2020.
[19] COSTA D R,SIMISTER R,ROBERTS L A,et al.Nutrient and drought stress: Implications for phenology and biomass quality in miscanthus[J].Annals of Botany,2019,124(4):553-566.DOI:10.1093/aob/mcy155.
[20] ZAHOOR R,ZHAO Wenqing,DONG Haoran,et al.Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton(Gossypium hirsutum L)[J].Plant Physiology and Biochemistry,2017,119:21-32.DOI:10.1016/j.plaphy.2017.08.011.
[21] 刘建祥,杨肖娥,吴良欢,等.低钾胁迫对水稻叶片光合功能的影响及其基因型差异[J].作物学报,2001,27(6):1000-1006.DOI:10.3321/j.issn:0496-3490.2001.06.051.
[22] 夏乐,于海秋,郭焕茹,等.低钾胁迫对玉米光合特性及叶绿素荧光特性的影响[J].玉米科学,2008,16(6):71-74.DOI:10.13597/j.cnki.maize.science.2008.06.026.
[23] WANG Jidong,ZHU Guopeng,DONG Yue,et al.Potassium starvation affects biomass partitioning and sink-source responses in three sweet potato genotypes with contrasting potassium-use efficiency[J].Crop and Pasture Science,2018,69(5):506-514.DOI:10.1071/CP17328.
[24] DENG Kexuan,WANG Wanjing,FENG Li,et al.Target of rapamycin regulates potassium uptake in Arabidopsis and potato[J].Plant Physiology and Biochemistry,2020,155(10):357-366.DOI:10.1016/j.plaphy.2020.07.044.
[25] 王晓茹,董合林,李永旗,等.棉花不同品种钾吸收效率差异的根系形态学和生理学机理[J].棉花学报,2016,28(2):152-159.DOI:10.11963/issn.1002-7807.201602008.
[26] DUNCAN E G,O’SULLIVAN C A,ROPER M M,et al.Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions[J].Journal of Plant Nutrition and Soil Science,2018,181(3):364-373.DOI:10.1002/jpln.201700376.
[27] 刘芳,林李华,张立丹,等.缺钾对香蕉苗期地上部、根系生长及氮磷钾吸收的影响[J].华南农业大学学报,2018,39(2):47-53.DOI:10.7671/j.issn.1001-411X.2018.02.008.
[28] CAI Kangfeng,GAO Huaizhou,WU Xiaojian,et al.The ability to regulate transmembrane potassium transport in root is critical for drought tolerance in barley[J].International Journal of Molecular Sciences,2019,20(17):4111-4133.DOI:10.3390/ijms20174111.
[29] MA Nana,DONG Linda,LU Wei,et al.Transcriptome analysis of maize seedling roots in response to nitrogen-, phosphorus-, and potassium deficiency[J].Plantand Soil,2020,447(1/2):637-658.DOI:10.1007/s11104-019-04385-3.
[30] 黄莹,周文灵,陈迪文,等.钾镁水平对甘蔗主要矿质营养吸收和分配的影响[J].南方农业学报,2019,50(8):1695-1700.DOI:10.3969/j.issn.2095-1191.2019.08.07.
[31] PACHECO J S,CECíLIA L P R,MENDES R C,et al.Agronomic efficiency for nitrogen, phosphorus, and potassium in bean cultivars[J].Bioscience Journal,2020,36(5):1590-1599.DOI:10.14393/BJ-v36n5a2020-42340.
[32] 王为木,杨肖娥,李华,等.低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响[J].中国水稻科学,2003,17(1):52-56.DOI:10.16819/j.1001-7216.2003.01.011.

相似文献/References:

[1]王子澍,王明元,陈科霖,等.香蕉HOS15基因的鉴定及枯萎病菌胁迫下的表达分析[J].华侨大学学报(自然科学版),2024,45(3):351.[doi:10.11830/ISSN.1000-5013.202401008]
 WANG Zishu,WANG Mingyuan,CHEN Kelin,et al.Identification of Banana HOS15 Gene and Expression Analysis Under Stress of Fusarium Wilt[J].Journal of Huaqiao University(Natural Science),2024,45(4):351.[doi:10.11830/ISSN.1000-5013.202401008]

备注/Memo

备注/Memo:
收稿日期: 2021-05-17
通信作者: 王明元(1980-),男,副教授,博士,主要从事香蕉枯萎病的研究.E-mail:w_mingyuan@163.com.
基金项目: 福建省高校产学合作项目(2017N5009); 福建省星火项目(2021S0049); 华侨大学高层次人才科研启动费项目(17BS415); 华侨大学中青年教师科技创新资助计划(ZQN-YX507)http://www.hdxb.hqu.edu.cn
更新日期/Last Update: 2022-07-20