[1]黄建新,许丽婷,于佩秋,等.模糊β-最小和最大描述的矩阵表示[J].华侨大学学报(自然科学版),2021,42(3):402-409.[doi:10.11830/ISSN.1000-5013.202006049]
 HUANG Jianxin,XU Liting,YU Peiqiu,et al.Matrix Representation of Fuzzy β-Minimal and Maximal Descriptions[J].Journal of Huaqiao University(Natural Science),2021,42(3):402-409.[doi:10.11830/ISSN.1000-5013.202006049]
点击复制

模糊β-最小和最大描述的矩阵表示()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第42卷
期数:
2021年第3期
页码:
402-409
栏目:
出版日期:
2021-05-20

文章信息/Info

Title:
Matrix Representation of Fuzzy β-Minimal and Maximal Descriptions
文章编号:
1000-5013(2021)03-0402-08
作者:
黄建新1 许丽婷2 于佩秋2 李进金12
1. 华侨大学 数学科学学院, 福建 泉州 362021;2. 闽南师范大学 数学与统计学院, 福建 漳州 363000
Author(s):
HUANG Jianxin1 XU Liting2 YU Peiqiu2 LI Jinjin12
1. School of Mathematiccal Sciences, Huaqiao University, Quanzhou 362021, China; 2. School of Mathematics Sciences and Statistics, Minnan Normal University, Zhangzhou 363000, China
关键词:
模糊β-覆盖 模糊β-最小描述 模糊β-最大描述 约简 矩阵
Keywords:
fuzzy β-covering fuzzy β-minimal description fuzzy β-maximal description reduction matrix
分类号:
O29
DOI:
10.11830/ISSN.1000-5013.202006049
文献标志码:
A
摘要:
利用矩阵方法研究模糊β-覆盖近似空间中有关模糊β-最小和最大描述的问题,并研究模糊β-覆盖近似空间的约简问题.首先,通过定义的新矩阵计算模糊β-最小和最大描述,并用相关的实例进行验证.其次,定义去除交可约元的约简,提出有效计算约简的一种矩阵方法.最后,研究模糊β-最大描述和去除交可约元产生的约简之间的联系.
Abstract:
A matrix method is used to study the fuzzy β-minimal and maximal descriptions in the fuzzy β-covering approximation spaces, and the reduction of fuzzy β-covering approximation space. Firstly, we calculate fuzzy β-minimal and maximal descriptions by the defined new matrix, and verify them by related examples. Secondly, we define the reduction that removes intersection reducible elements, and propose a matrix method to calculate efficiently the reduction. Finally, we study the relationship between the fuzzy β-maximal descriptions and reductions produced by removing intersection reducible elements.

参考文献/References:

[1] ZAKOWSKI W.Approximations in the space(u,π)[J].Demonstratio Mathematica,1983,16(3):761-770.DOI:10.1515/dema-1983-0319.
[2] PAWLAK Z.Rough sets[J].International Journal of Computer & Information Sciences,1982,11(5):341-356.DOI:10.1007/BF01001956.
[3] JENSEN R,SHEN Q.Fuzzy-rough attribute reduction with application to web categorization[J].Fuzzy Sets and Systems,2004,141(3):469-485.DOI:10.1016/S0165-0114(03)00021-6.
[4] ZADEH L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353.DOI:10.1016/S0019-9958(65)90241-X.
[5] FENG Tao,ZHANG Shaopu,MI Jusheng.The reduction and fusion of fuzzy covering systems based on the evidence theory[J].International Journal of Approximate Reasoning,2012,53(1):87-103.DOI:10.1016/j.ijar.2011.10.002.
[6] INUIGUCHI M.Approximation-oriented fuzzy rough set approaches[J].Fundamenta Informaticae,2015,142(1/2/3/4):21-51.DOI:10.3233/FI-2015-1283.
[7] LI Tongjun,LEUNG Y,ZHANG Wenxiu.Generalized fuzzy rough approximation operators based on fuzzy coverings[J].International Journal of Approximate Reasoning,2008,48(3):836-856.DOI:10.1016/j.ijar.2011.06.011.
[8] WU Mingfen,HAN Haohan,SI Yanfei.Properties and axiomatization of fuzzy rough sets based on fuzzy covering[C]//2012 International Conference on Machine Learning and Cybernetics.[S.l.]:IEEE Press,2012:184-189.DOI:10.1109/ICMLC.2012.6358909.
[9] MA Liwen.Two fuzzy covering rough set models and their generalizations over fuzzy lattices[J].Fuzzy Sets and Systems,2016,294:1-17.DOI:10.1016/j.fss.2015.05.002.
[10] YANG Bin,HU Baoqing.On some types of fuzzy covering-based rough sets[J].Fuzzy Sets and Systems,2017,312:36-65.DOI:10.1016/j.fss.2016.10.009.
[11] D’EER L,CORNELIS C,GODO L.Fuzzy neighborhood operators based on fuzzy coverings[J].Fuzzy Sets and Systems,2017,312:17-35.DOI:10.1016/j.fss.2016.04.003.
[12] YANG Bin,HU Baoqing.Fuzzy neighborhood operators and derived fuzzy coverings[J].Fuzzy Sets and Systems,2019,370:1-33.DOI:10.1016/j.fss.2018.05.017.
[13] WANG Jingqian,ZHANG Xiaohong.Matrix approaches for some issues about minimal and maximal descriptions in covering-based rough sets[J].International Joural of Approximate Reasoning,2019,104:126-143.DOI:10.1016/j.ijar.2018.10.021.
[14] YANG Bin,HU Baoqing.A fuzzy covering-based rough set model and its generalization over fuzzy lattice[J].Information Sciences,2016,367/368:463-486.DOI:10.1016/j.ins.2016.05.053.
[15] 黄正华,胡宝清.模糊粗糙集理论研究进展[J].模糊系统与数学,2005,19(4):125-134.DOI:10.3969/j.issn.1001-7402.2005.04.022.
[16] 林姿琼,王敬前,祝峰.矩阵方法计算覆盖粗糙集中最小、最大描述[J].山东大学学报(理学版),2014(49):101.DOI:10.6040/j.issn.1671-9352.1.2014.034.
[17] 陈应生,李进金.决策信息系统协调性的关系矩阵表示[J].华侨大学学报(自然科学版),2019,40(6):823-829.DOI:10.11830/ISSN.1000-5013.201810106.
[18] 陈东晓,李进金.形式背景的下近似协调与粒协调的关系[J].华侨大学学报(自然科学版),2020,41(1):130-136.DOI:10.11830/ISSN.1000-5013.201907035.

备注/Memo

备注/Memo:
收稿日期: 2020-06-29
通信作者: 黄建新(1969-),男,副教授,主要从事粗糙集理论及其应用的研究.E-mail:jxhuang@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11871259)
更新日期/Last Update: 2021-05-20