参考文献/References:
[1] ALLEN S M,CAHN J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J].Acta Metallurgica,1979,27(6):1085-1095.DOI:10.1016/0001-6160(79)90196-2.
[2] BENNES M,CHALUPECKY V,MIKULA K.Geometrical image segmentation by the Allen-Cahn equation[J].Applied Numerical Mathematics,2004,51(2/3):187-205.DOI:10.1016/j.apnum.2004.05.001.
[3] FENG Xiaobing,PROHL A.Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows[J].Numerische Mathematik,2003,94(1):33-65.DOI:10.1007/s00211-002-0413-1.
[4] WHEELER A A,BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phase transitions in binary alloys[J].Physical Review A: Atomic Molecular and Optical Physics,1992,45(10):7424-7439.DOI:10.1103/PhysRevA.45.7424.
[5] COHEN D S,MURRAY J D.A generalized diffusion model for growth and dispersal inapopulation[J].Journal of Mathematical Biology,1981,12(2):237-249.DOI:10.1007/BF00276132.
[6] HEIDA M,R?GER M.Large deviation principle for a stochastic Allen-Cahn equation[J].Journal of Theoretical Probability,2018,31(1):364-401.DOI:10.1007/s109559-016-0711-7.
[7] DU Qiang,YANG Jiang.Asymptotically compatible Fourier spectral approximations of nonlocal Allen-Cahn equations[J].SIAM Journal on Numerical Analysis,2016,54(3):1899-1919.DOI:10.1137/15M1039857.
[8] ZHAI Shuying,FENG Xinlong,HE Yinnian.Numerical simulation of the three dimensional Allen-Cahn equationby the high-order compact ADI method[J].Computer Physics Communications,2014,185(10):2449-2455.DOI:10.1016/j.cpc.2014.05.017.
[9] CHEN Xinfu,ELLIOTT C M,GARDINER A,et al.Convergence of numerical solutions to the Allen-Cahn equation[J].Applicable Analysis,1998,69(1):47-56.DOI:10.1080/00036819808840645.
[10] FENG Xiaobing,LI Yukun.Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow[J].IMA Journal of Numerical Analysis,2014,35(4):1622-1651.DOI:10.1093/imanum/dru058.
[11] ZHANG Jian,DU Qiang.Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit[J].SIAM Journal on Scientific Computing,2009,31(4):3042-3063.DOI:10.1137/080738398.
[12] FENG Xinlong,TANG Tao,YANG Jiang.Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods[J].SIAM Journal on Scientific Computing,2015,37(1):A271-A294.DOI:10.1137/130928662.
[13] WENG Zhifeng,TANG Longkun.Analysis of the operator splitting scheme for the Allen-Cahn equation[J].Numerical Heat Transfer, Part B: Fundamentals,2016,70(5):472-483.DOI:10.1080/10407790.2016.1215714.
[14] 郑楠,翟术英,翁智峰.求解Allen-Cahn方程的两种高效数值格式[J].应用数学进展,2017,6(3):283-295.DOI:10.12677/aam.2017.63034.
[15] 翁智峰,姚泽丰,赖淑琴.重心插值配点法直接求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.
[16] 庄清渠,王金平.四阶常微分方程的Birkhoff配点法[J].华侨大学学报(自然科学版),2018,39(2):306-311.DOI:10.11830/ISSN.1000-5013.201707005.
[17] LIU Huan,CHENG Aijie,WANG Hong,et al.Time-fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation[J].Computers and Mathematics with Applications,2018,76(8):1876-1892.DOI:10.1016/j.camwa.2018.07.036.
[18] ZHAI Shuying,WENG Zhifeng,FENG Xinlong.Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model[J].Applied Mathematical Modelling,2016,40(2):1315-1324.DOI:10.1016/j.apm.2015.07.021.
[19] WU Longyuan,ZHAI Shuying.A new high order ADI numerical difference formula for time-fraction-al convection-diffusion equation[J].Applied Mathematics and Computation,2019:124564.DOI:10.1016/j.amc.2019.124564.
[20] REN Jincheng,SUN Zhizhong,DAI Weizhong.New approximations for solving the Caputo-Type fractional partial differential equations[J].Applied Mathematical Modelling,2015,40(4):2625-2636.DOI:10.1016/j.apm.2015.10.011.