[1]白晓瑾,石擎天.解析函数的Bohr型半径估计[J].华侨大学学报(自然科学版),2019,40(6):817-822.[doi:10.11830/ISSN.1000-5013.201901058]
 BAI Xiaojin,SHI Qingtian.Estimations of Bohr Type Radii for Analytic Functions[J].Journal of Huaqiao University(Natural Science),2019,40(6):817-822.[doi:10.11830/ISSN.1000-5013.201901058]
点击复制

解析函数的Bohr型半径估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第6期
页码:
817-822
栏目:
出版日期:
2019-11-20

文章信息/Info

Title:
Estimations of Bohr Type Radii for Analytic Functions
文章编号:
1000-5013(2019)06-0817-06
作者:
白晓瑾1 石擎天23
1. 华侨大学 数学科学学院, 福建 泉州 363021;2. 泉州师范学院 数学与计算机科学学院, 福建 泉州 362000;3. 泉州师范学院 福建省大数据管理新技术与知识工程重点实验室, 福建 泉州 362000
Author(s):
BAI Xiaojin1 SHI Qingtian23
1. School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China; 2. School of Mathematics and Computation Sciences, Quanzhou Normal University, Quanzhou 362000, China; 3. Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou Normal University, Quanzhou 362000, China
关键词:
解析函数 Bohr半径 截断部分 系数估计
Keywords:
analytic functions Bohr radii section part coefficient estimates
分类号:
O174.51
DOI:
10.11830/ISSN.1000-5013.201901058
文献标志码:
A
摘要:
引进参数p∈(0,∞),探讨单位圆盘到自身上解析函数的Bohr型不等式.运用有界解析函数的偏差定理和系数估计,推广经典的Bohr定理和Paulsen等得到的相应结果,且半径估计值都是精确的.
Abstract:
We mainly estimate some kinds of Bohr-type inequalities for analytic functions from the unit disk into itself by introducing the parameter p∈(0,∞). By applying the distortion theorem and coefficient estimations of bounded analytic functions, we generalize the classical Bohr theorem and the corresponding results obtained by Paulsen et al, and obtain some sharpness radii estimations.

参考文献/References:

[1] BOHR H.A theorem concerning power series[J].Proceedings of the London Mathematical Society,1914,13(1190):1-5.DOI:10.1112/plms/s2-13.1.1.
[2] LANDAU E,GAIER D.Darstellung und Begründung einiger neuerer Ergebnisse der Funktionen-theorie[M]//HAFNER W.Monatshefte für Mathematik und Physik.Berlin:Springer-Verlag,1986.
[3] ROGOSINSKI W.über Bildschranken bei Potenzreihen und ihren Abschnitten[J].Mathematische Zeitschrift,1923,17(1):260-276.DOI:10.1007/bf01504347.
[4] MUHANNA Y A,ALI R M.Bohr’s phenomenon for analytic functions and the hyperbolicmetric[J].Mathematische Nachrichten,2013,286(11/12):1059-1065.DOI:10.1002/mana.201200197.
[5] LIU Taishun,WANG Jianfei,TANG Xiaomin.Schwarz lemma at the boundary of the unit ball in Cn and its applications[J].Journal of Geometric Analysis,2014,25(3):1890-1914.DOI:10.1007/s12220-014-9497-y.
[6] WANG Jianfei,LIU Taishun.The Roper-Suffridge extension operator and its applications to convex mappings in C</sup>2[J].Transactions of the American Mathematical Society,2018,370(11):7743-7759.DOI:10.1090/tran/7221.
[7] KAYUMOV I R,PONNUSAMY S.Bohr-Rogosinski radius for analytic functions[J/OL].(2017-08-18)[2019-01-31] .https://arxiv.org/pdf/1708.05585.pdf.
[8] PAULSEN V I,POPESCU G,SINGH D.On Bohr’s inequality[J].Proceedings of the London Mathematical Society,2002,85(2):493-512.DOI:10.1112/s0024611502013692.
[9] GRAHAM I,KOHR G.Geometric function theory in one and higher dimensions[M].New York:Marcel Dekker Inc,2003.DOI:10.1201/9780203911624.
[10] LIU Mingsheng,SHANG Yinmiao,XU Junfeng.Bohr-type inequalities of analytic functions[J].Journal of Inequalities and Applications,2018,345(1):1-13.DOI:10.1186/s13660-018-1937-y.

相似文献/References:

[1]王朝祥.Bloch常数的下界估计[J].华侨大学学报(自然科学版),2022,43(3):416.[doi:10.11830/ISSN.1000-5013.202012036]
 WANG Chaoxiang.Estimation of Lower Bound for Bloch Constant[J].Journal of Huaqiao University(Natural Science),2022,43(6):416.[doi:10.11830/ISSN.1000-5013.202012036]
[2]陈铭新,李程鹏,王建飞.半空间上的Bohr型不等式[J].华侨大学学报(自然科学版),2022,43(5):693.[doi:10.11830/ISSN.1000-5013.202106014]
 CHEN Mingxin,LI Chengpeng,WANG Jianfei.Bohr Type Inequalities in Half Space[J].Journal of Huaqiao University(Natural Science),2022,43(6):693.[doi:10.11830/ISSN.1000-5013.202106014]

备注/Memo

备注/Memo:
收稿日期: 2019-01-30
通信作者: 石擎天(1986-),男,讲师,博士,主要从事复分析的研究.E-mail:shiqingtian2013@gmail.com.
基金项目: 国家自然科学基金资助项目(11471128); 泉州师范学院科研计划项目(H19009)
更新日期/Last Update: 2019-11-20