[1]傅冬绵,黄心中.一类单叶调和函数的拟共形性质[J].华侨大学学报(自然科学版),2019,40(6):812-816.[doi:10.11830/ISSN.1000-5013.201903003]
 FU Dongmian,HUANG Xinzhong.On Quasiconformal Properties for One Set of Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2019,40(6):812-816.[doi:10.11830/ISSN.1000-5013.201903003]
点击复制

一类单叶调和函数的拟共形性质()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第6期
页码:
812-816
栏目:
出版日期:
2019-11-20

文章信息/Info

Title:
On Quasiconformal Properties for One Set of Univalent Harmonic Mappings
文章编号:
1000-5013(2019)06-0812-05
作者:
傅冬绵1 黄心中2
1. 华侨大学 工商管理学院, 福建 泉州 362021;2. 华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
FU Dongmian1 HUANG Xinzhong2
1. College of Business Administration, Huaqiao University, Quanzhou 362021, China; 2. School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
单叶调和函数 拟共形映照 复特征模估计 调和拟共形延拓
Keywords:
univalent harmonic function quasiconformal mapping module estimate of complex dilatation harmonic quasiconformal extension
分类号:
O174.51;O174.55
DOI:
10.11830/ISSN.1000-5013.201903003
文献标志码:
A
摘要:
研究单位圆盘D={z||z|<1}上满足Re{αz[h″(z)+g″(z)]+h’(z)+g’(z)}>0,z∈D,α>0的单叶调和函数f(z)=h(z)+g(z)^-的拟共形性质,对复伸张w(z)=(g’(z))/(h’(z))的模给出最好的最小上界估计,进而给出该类函数到D的余集Dc上的拟共形延拓,并对其复伸张的模给出最好的最小上界估计,改进和推广了2004年Yalcin S等的研究成果.
Abstract:
We study the quasiconformal properties of the univalent harmonic functions f(z)=h(z)+g(z)^- on the unit disk D={z||z|<1} with Re{αz[h″(z)+g″(z)]+h’(z)+g’(z)}>0, z∈D, α>0, and obtain the best upper bound estimation for the module of the dilatation function w(z)=(g’(z))/(h’(z)). Moreover, we construct their harmonic quasiconformal extension functions to the domain Dc of D, and give the best upper bound estimation for the module of their dilatation functions. The results improve and generalize the ones made by Yalcin S, et al in 2004.

参考文献/References:

[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(10):689-692.DOI:10.1090/S0002-9904-1936-06397-4.
[2] CLUNIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I Math,1984,9:3-25.
[3] AHLFORS L.Lectures on quasiconformal mappings[M].Providence:American Mathematical Society,2006.
[4] KALAJ D.Quasiconformal harmonic mappings and close to convex domains[J].Filomat,2010,24(1):63-68.DOI:10.2298/FIL1001063K.
[5] REICH E.On extremal quasiconformal extensions of conformal mappings[J].Israel J Math,1977,28(1/2):91-97.DOI:10.1007/bf02759783.
[6] YALCIN S,?ZTüRK M.A new subclass of complex harmonic functions[J].Mathematical Ineqalities and Applications,2004,7(1):55-61.
[7] PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Ann Acad Sci Fenn Math,2002,27:365-372.
[8] 黄心中,傅冬绵.微分算子作用下平面调和映照的单叶半径和Bloch常数估计[J].数学年刊,2013,34A(6):653-662.
[9] 潘旭玲,黄心中.一类新的Salagean-Type单叶调和映照的特征[J].华侨大学学报(自然科学版),2013,34(4):466-470.DOI:10.11830/issn.1000-5013.2013.04.0466.
[10] 潘旭玲,黄心中.一类单位圆盘上单叶调和映照的延拓定理[J].华侨大学学报(自然科学版),2013,34(6):701-705.DOI:10.11830/issn.1000-5013.2013.06.0701.
[11] 王其文,黄心中.在微分算子作用下调和函数的单叶半径估计[J].华侨大学学报(自然科学版),2014,35(2):227-231.DOI:10.11830/issn.1000-5013.2014.02.0227.
[12] 黄心中.单位圆到水平条形无界区域的调和拟共形映照[J].数学学报,2014,57(5):875-880.
[13] FU Dongmian,HUANG Xinzhong.Harmonic K-quasiconformal mappings from unit disk onto half planes[J].Bull Malays Math Sci Soc,2016,39(1):339-347.DOI:10.1007/s40840-015-0174-5.
[14] 黄心中.平面上具有有界Frechet导数的调和映照单叶半径的精确估计[J].中国科学:数学,2014,44(6):685-692.DOI:10.1360/012014-24.

相似文献/References:

[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
 Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(6):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
 Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(6):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
 Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(6):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
 LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(6):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]韩雪,黄心中.两类单叶调和函数的偏差估计[J].华侨大学学报(自然科学版),2008,29(4):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
 HAN Xue,HUANG Xin-zhong.Estimate on the Distortion for Two Classes of Harmonic Univalent Functions[J].Journal of Huaqiao University(Natural Science),2008,29(6):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
[6]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(6):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[7]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(6):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[8]胡春英,黄心中.某些单叶调和函数的稳定性[J].华侨大学学报(自然科学版),2011,32(4):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
 HU Chun-ying,HUANG Xin-zhong.Stability of Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(6):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
[9]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[10]胡春英,黄心中.非平凡双向单叶调和映照的微分方程[J].华侨大学学报(自然科学版),2012,33(1):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
 HU Chun-ying,HUANG Xin-zhong.On Differential Equations for Non-Trivial Bilateral Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(6):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
[11]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[12]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(6):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]

备注/Memo

备注/Memo:
收稿日期: 2019-03-03
通信作者: 傅冬绵(1961-),女,副教授,主要从事函数论与计算机理论的研究.E-mail:fudm@163.com.
基金项目: 华侨大学中青年教师科技创新资助项目(600005-Z16J063)
更新日期/Last Update: 2019-11-20