[1]罗来鹏,范自柱.粗糙集中几种粒结构的代数关系[J].华侨大学学报(自然科学版),2019,40(5):694-700.[doi:10.11830/ISSN.1000-5013.201812041]
 LUO Laipeng,FAN Zizhu.Algebraic Relation of Several Granular Structures in Rough Sets[J].Journal of Huaqiao University(Natural Science),2019,40(5):694-700.[doi:10.11830/ISSN.1000-5013.201812041]
点击复制

粗糙集中几种粒结构的代数关系()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第5期
页码:
694-700
栏目:
出版日期:
2019-09-20

文章信息/Info

Title:
Algebraic Relation of Several Granular Structures in Rough Sets
文章编号:
1000-5013(2019)05-0694-07
作者:
罗来鹏 范自柱
华东交通大学 理学院, 江西 南昌 330013
Author(s):
LUO Laipeng FAN Zizhu
School of Sciences, East China Jiaotong University, Nanchang 330013, China
关键词:
粒计算 粗糙集 属性约简 包含度 变精度粗糙集 最优近似 相似度
Keywords:
granular computing rough set attribute reduction inclusion degree variable precision rough set optimal approximation similarity degree
分类号:
TP18
DOI:
10.11830/ISSN.1000-5013.201812041
文献标志码:
A
摘要:
针对目标概念在近似空间上存在多种粒结构的问题,通过讨论目标概念的最优近似集与Pawlak近似集、变精度近似集之间的代数关系,得到最优近似集与Pawlak下、上近似集、变精度下、上近似集的等价条件;通过分析基于最优近似、基于Pawlak近似、基于变精度近似的分布约简之间的关系,得到在一定条件下,最优近似分布约简为Pawlak近似与变精度近似的分布约简.研究结果表明:根据目标概念与基本知识粒之间不同的近似刻画,不仅可以建立不同的粗糙集模型,还可以建立不同的分布约简.
Abstract:
To the problem of existing many kinds of granular structures on approximation space, the algebraic relations among the optimal approximation set, Pawlak lower and upper approximation set and the variable precision lower and upper approximation set of the target concept are discussed. The equivalent conditions of the optimal approximation set between Pawlak approximation set, the variable precision approximation set are obtained. The relationships among the distribution reduction based on the optimal approximation, the distribution reduction based on the Pawlak approximation and the distribution reduction based on the variable precision approximation are analyzed. Under certain conditions, the conclusions that the optimal approximate distribution reduction is Pawlak approximation and variable precision approximation distribution reduction are presented. It can be seen from these above conclusions that the different rough set models can not only be established, but also different distribution reduction can be established according to the different approximate characterization between the target concept and the basic granular.

参考文献/References:

[1] 苗夺谦,张清华,钱宇华,等.从人类智能到机器实现模型: 粒计算理论与方法[J].智能系统学报,2016,11(6):743-757.DOI:10.11992/tis.201612014.
[2] 梁吉业,钱宇华,李德玉,等.大数据挖掘的粒计算理论与方法[J].中国科学:信息科学,2015,45(11):1355-1369.DOI:10.1360/N112015-00092.
[3] PAWLAK Z.Rough sets[J].Information and Computer Science,l982,11(5):34l-356.
[4] HU Qinghua,MI Jusheng,CHEN Degang.Granular computing based machine learning in the era of big data[J].Information Sciences,2017,378(2):242-243.DOI:10.1016/j.ins.2016.10.012.
[5] 王健,徐余法,陈国初.基于相对核的属性约简[J].华侨大学学报(自然科学版),2013,34(1):10-13.DOI:10.11830/ISSN.1000-5013.2013.01.0010.
[6] 王敬,王全凤.复杂系统风险分析的模拟方法[J].华侨大学学报(自然科学版),2010,31(3):337-339.DOI:10.11830/ISSN.1000-5013.2010.03.0337.
[7] LIU Dun,LI Tianrui,ZHANG Junbo.Incremental updating approximations in probabilistic under rough sets the variation of attributes[J].Knowledge-Based Systems,2015,73(81):81-96.DOI:10.1016/j.knosys.2014.09.008.
[8] JING Yunge,LI Tianrui,HAMIDO F,et al.An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view[J].Information Sciences,2017,411(8):23-38.DOI:10.1016/j.ins.2017.05.003.
[9] CHEN Linshu,WANG Jiayang,WANG Weicheng,et al.A new granular computing model based on algebraic structure[J].Chinese Journal of Electronics,2019,28(1):136-142.DOI:10.1049/cje.2018.09.006.
[10] HU Xingchen,WITOLD P,WANG Xianmin.Comparative analysis of logic operators: A perspective of statistical testing and granular computing[J].Approximate Reasoning,2015,66(11):73-90.DOI:10.1016/j.ijar.2015.07.0 11.
[11] 王宝丽,梁吉业,胡运红.基于粒计算的犹豫模糊多准则决策方法[J].模式识别与人工智能,2016,29(3):252-262.DOI:10.16451/j.cnki.issn1003-6059.201603007.
[12] 吴伟志,陈颖,徐优红,等.协调的不完备多粒度标记决策系统的最优粒度选择[J].模式识别与人工智能,2016,29(2):108-115.DOI:10.16451/j.cnki.issn1003-6059.201602002.
[13] 吴伟志.多粒度粗糙集数据分析研究的回顾与展望[J].西北大学学报(自然科学版),2018,48(4):501-510.DOI:10.16152/j.cnki.xdxbzr.2018-04-003.
[14] ZIARKO W.Variable precision rough set model [J].Journal of Computer and System Science,1993,46(1):39-59.DOI:10.1016/0022-0000(93)90048-2.
[15] ZIARKO W.Probabilistic approach to rough sets[J].Approximate Reasoning,2008,49(2):272-284.DOI:10.101 6/j.ijar.2007.06.014.
[16] YAO Yiyu.Probabilistic rough set approximations[J].Approximate Reasoning,2008,49(2):255-271.DOI:10.1016/j.ijar.2007.05.019.
[17] 张清华,薛玉斌,胡峰,等.粗糙集近似集不确定性研究[J].电子学报,2016,44(7):1574-1580.DOI:10.3969/j.issn.0372-2112.2016.07.008.
[18] 张清华,王国胤,肖雨.粗糙集的近似集[J].软件学报,2012,23(7):1745-1759.DOI:10.3724/SP.J.1001.2012.04226.
[19] 张清华,薛玉斌,王国胤.粗糙集的最优近似集[J].软件学报,2016,27(2):295-308.DOI:10.13328/j.cnki.jos.004854.
[20] 谭安辉,李进金,吴伟志.多粒度粗糙集和覆盖粗糙集间的近似与约简关系[J].模式识别与人工智能,2016,29(8):691-697.DOI:10.16451/j.cnki.issn1003-6059.201608003.
[21] 袁修久,张文修.模糊粗糙集的包含度和相似度[J].模糊系统与数学,2005,19(1):111-115.
[22] 罗来鹏,刘二根,范自柱.最优近似粗糙集[J].河南科技大学学报(自然科学版),2018,39(3):89-93.DOI:10.15926/j.cnki.issn1672-6871.2018.03.017.
[23] 邓大勇,黄厚宽,李向军.不一致决策系统中约简之间的比较[J].电子学报,2007,35(2):252-255.DOI:10.3321/j.issn:0372-2112.2007.02.014.
[24] 杜卫锋,秦克云.不协调决策表几种约简标准及其关系分析[J].电子学报,2011,39(6):1336-1339.
[25] 张文修,梁怡,吴伟志.信息系统与知识发现[M].北京:科学出版社,2003.

相似文献/References:

[1]方瑞明.集成RS和SVR的电力系统短期负荷预测方法[J].华侨大学学报(自然科学版),2007,28(3):252.[doi:10.3969/j.issn.1000-5013.2007.03.008]
 FANG Rui-ming.Short-Term Load Forecasting of Power System with Rough Set and Support Vector Regression[J].Journal of Huaqiao University(Natural Science),2007,28(5):252.[doi:10.3969/j.issn.1000-5013.2007.03.008]
[2]王敬,王全凤.复杂系统风险分析的模拟方法[J].华侨大学学报(自然科学版),2010,31(3):337.[doi:10.11830/ISSN.1000-5013.2010.03.0337]
 WANG Jing,WANG Quan-feng.Simulation Method for Risk Analysis in Complex System[J].Journal of Huaqiao University(Natural Science),2010,31(5):337.[doi:10.11830/ISSN.1000-5013.2010.03.0337]
[3]王志焕,游小英,李伟康,等.模糊广义决策信息系统的证据特征与信任约简[J].华侨大学学报(自然科学版),2020,41(5):683.[doi:10.11830/ISSN.1000-5013.202003026]
 WANG Zhihuan,YOU Xiaoying,LI Weikang,et al.Evidence Characteristics and Belief Reduction of Fuzzy Generalized Decision Information System[J].Journal of Huaqiao University(Natural Science),2020,41(5):683.[doi:10.11830/ISSN.1000-5013.202003026]
[4]陈应生,李进金.动态多尺度决策信息系统局部最优尺度的更新规律[J].华侨大学学报(自然科学版),2024,45(6):800.[doi:10.11830/ISSN.1000-5013.202306028]
 CHEN Yingsheng,LI Jinjin.Updating Law of Local Optimal Scale of Dynamic Multi-Scale Decision Information System[J].Journal of Huaqiao University(Natural Science),2024,45(5):800.[doi:10.11830/ISSN.1000-5013.202306028]

备注/Memo

备注/Memo:
收稿日期: 2018-12-19
通信作者: 罗来鹏(1973-),男,副教授,主要从事粗糙集与粒计算等研究.E-mail:luolp789@163.com.
基金项目: 国家自然科学基金资助项目(61472138)
更新日期/Last Update: 2019-09-20