参考文献/References:
[1] ALLEN S M,CAHN J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J].Acta Metallurgica,1979,27:1085-1095.DOI:10.1016/0001-6160(79)90196-2.
[2] YANG Xiaofeng,ZHAO Jia,HE Xiaoming.Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method[J].J Comput Appl Math,2018,343:80-97.DOI:10.1016/j.cam.2018.04.027.
[3] WHEELER A A,BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phase transitions in binary alloys[J].Phys Rev Appl,1992,45(10):7424-7439.DOI:10.1103/PhysRevA.45.7424.
[4] COHEN D S,MURRAY J D.A generalized diffusion model for growth and dispersal in a population[J].J Math Biol,1981,12(2):237-249.DOI:10.1007/BF00276132.
[5] HEIDA M,RÖGER M.Large deviation principle for a stochastic Allen-Cahn equation[J].J Theor Probab,2018,31(1):364-401.DOI:10.1007/s10959-016-0711-7.
[6] BENES M,CHALUPECKY V,MIKULA K.Geometrical image segmentation by the Allen-Cahn equation[J].Appl Numer Math,2004,51:187-205.DOI:10.1016/j.apnum.2004.05.001.
[7] DOBROSOTSKAYA J A,BERTOZZI A L.A wavelet-laplace variational technique for image deconvolution and inpainting[J].IEEE T Image Process,2008,17(5):657-663.DOI:10.1109/TIP.2008.919367..
[8] DU Qiang,JIANG Yang.Asymptotically compatible fourier spectral approximations of nonlocal Allen-Cahn equations[J].Siam J Numer Anal,2016,54(3):1899-1919.DOI:10.1137/15M1039857.
[9] LEE H G,LEE J Y.A semi-analytical fourier spectral method for the Allen-Cahn equation[J].Comput Math Appl,2014,68(3):174-184.DOI:10.1016/j.camwa.2014.05.015.
[10] XIAO Xufeng,FENG Xinlong,YUAN Jinyun.The stabilized semi-implicit finite element method for the surface Allen-Cahn equation[J].Discrete Cont Dyn-B,2017,22(7):2857-2877.DOI:10.3934/dcdsb.2017154.
[11] ZHAI Shuying,FENG Xinlong,HE Yinnian.Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method[J].Comput Phys Commun,2014,185(10):2449-2455.DOI:10.1016/j.cpc.2014.05.017.
[12] TANG Tao,YANG Jiang.Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle[J].J Comput Math,2016,34(5):471-481.DOI:10.4208/jcm.1603-m2014-0017.
[13] ADEROGBA A A,CHAPWANYA M.An explicit nonstandard finite difference scheme for the Allen-Cahn equation[J].J Differ Equ Appl,2015,21(10):875-886.DOI:10.1080/10236198.2015.1055737.
[14] STRACHOTA P,BENE M.Error estimate of the finite volume scheme for the Allen-Cahn equation[J].BIT,2018,58(2):489-507.DOI:10.1007/s10543-017-0687-4.
[15] 翁志峰,姚泽丰,赖淑琴.重心插值配点法直接求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.
[16] 庄清渠,王金平.四阶常微分方程的Birkhoff配点法[J].华侨大学学报(自然科学版),2018,39(2):306-311.DOI:10.11830/ISSN.1000-5013.201707005.
[17] ZHAI Shuying,WENG Zhifeng,FENG Xinlong.Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model[J].Appl Math Model,2016,40(2):1315-1324.DOI:10.11830/ISSN.1000-5013.201806043.
[18] ZHAI Shuying,WENG Zhifeng,FENG Xinlong.Investigations on several numerical methods for the non-local Allen-Cahn equation[J].Int J Heat Mass Tran,2015,87:111-118.DOI:10.1016/j.ijheatmasstransfer.2015.03.071.
[19] WENG Zhifeng,TANG Longkun.Analysis of the operator splitting scheme for the Allen-Cahn equation[J].Numer Heat Tr B-Fund,2016,70(5):472-483.DOI:10.1080/10407790.2016.1215714.
[20] WENG Zhifeng,ZHUANG Qingqu.Numerical approximation of the conservative Allen-Cahn equation by operator splitting method[J].Math Method Appl Sci,2017,40(12):4462-4480.DOI:10.1002/mma.4317.
相似文献/References:
[1]翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133.[doi:10.11830/ISSN.1000-5013.201806043]
WENG Zhifeng,YAO Zefeng,LAI Shuqin.Barycentric Interpolation Collocation Method for Allen-Cahn Equation[J].Journal of Huaqiao University(Natural Science),2019,40(3):133.[doi:10.11830/ISSN.1000-5013.201806043]
[2]汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科学版),2020,41(4):549.[doi:10.11830/ISSN.1000-5013.201910013]
WANG Jingying,DENG Yangfang,ZHAI Shuying.Numerical Solution of Fractional Allen-Cahn Equation byLaplace Transform[J].Journal of Huaqiao University(Natural Science),2020,41(3):549.[doi:10.11830/ISSN.1000-5013.201910013]
[3]邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690.[doi:10.11830/ISSN.1000-5013.202001001]
DENG Yangfang,YAO Zefeng,WANG Jingying,et al.Two Dimensional Allen-Cahn Equation Solved By FiniteDifference Method/Collocation Method[J].Journal of Huaqiao University(Natural Science),2020,41(3):690.[doi:10.11830/ISSN.1000-5013.202001001]
[4]陈心妍,张馨心,蔡耀雄.非局部Gray-Scott模型的二阶线性化差分格式[J].华侨大学学报(自然科学版),2024,45(4):524.[doi:10.11830/ISSN.1000-5013.202307024]
CHEN Xinyan,ZHANG Xinxin,CAI Yaoxiong.Second-Order Linearized Difference Scheme for Nonlocal Gray-Scott Model[J].Journal of Huaqiao University(Natural Science),2024,45(3):524.[doi:10.11830/ISSN.1000-5013.202307024]