[1]吴龙渊,汪精英,翟术英.求解二维Allen-Cahn方程的两种ADI格式[J].华侨大学学报(自然科学版),2019,40(3):412-420.[doi:10.11830/ISSN.1000-5013.201810014]
 WU Longyuan,WANG Jingying,ZHAI Shuying.Two ADI Schemes for Solving Two-Dimensional Alleb-Cahn Equations[J].Journal of Huaqiao University(Natural Science),2019,40(3):412-420.[doi:10.11830/ISSN.1000-5013.201810014]
点击复制

求解二维Allen-Cahn方程的两种ADI格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第40卷
期数:
2019年第3期
页码:
412-420
栏目:
出版日期:
2019-05-20

文章信息/Info

Title:
Two ADI Schemes for Solving Two-Dimensional Alleb-Cahn Equations
文章编号:
1000-5013(2019)03-0412-09
作者:
吴龙渊 汪精英 翟术英
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WU Longyuan WANG Jingying ZHAI Shuying
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Allen-Cahn方程 算子分裂 交替方向隐格式 傅里叶分析 极大值原理
Keywords:
Allen-Cahn equation operator split alternating direction implicitscheme Fourier analysis maximum principle
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.201810014
文献标志码:
A
摘要:
为了构建二维Allen-Cahn方程的高效数值格式,利用算子分裂方法将原方程离散成非线性方程和二维热传导方程,其中,非线性方程有解析解.二维热传导方程时间离散采用Crank-Nicolson格式,空间离散分别采用二阶中心差分和四阶Padé逼近,得到两个稳定的数值格式.数值实验结果表明:格式具有有效性;能量呈现递减规律.
Abstract:
Construct an efficient numerical scheme for the two-dimensional Allen-Cahn equation. The original equation is discretized into a nonlinear equation and a two-dimensional heat conduction equation by using the operator splitting method in which the nonlinear equation has an analytical solution. To the two-dimensional heat conduction equation, the time dispersion is in the Crank-Nicholson scheme, and the spatial discretization is obtained by using the second-order center difference and the fourth-order Padé approximation respectively, we two stable numerical schemes. Numerical experiments demonstrate the validity of the schemes and the law of energy diminution.

参考文献/References:

[1] ALLEN S M,CAHN J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J].Acta Metallurgica,1979,27:1085-1095.DOI:10.1016/0001-6160(79)90196-2.
[2] YANG Xiaofeng,ZHAO Jia,HE Xiaoming.Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method[J].J Comput Appl Math,2018,343:80-97.DOI:10.1016/j.cam.2018.04.027.
[3] WHEELER A A,BOETTINGER W J,MCFADDEN G B.Phase-field model for isothermal phase transitions in binary alloys[J].Phys Rev Appl,1992,45(10):7424-7439.DOI:10.1103/PhysRevA.45.7424.
[4] COHEN D S,MURRAY J D.A generalized diffusion model for growth and dispersal in a population[J].J Math Biol,1981,12(2):237-249.DOI:10.1007/BF00276132.
[5] HEIDA M,RÖGER M.Large deviation principle for a stochastic Allen-Cahn equation[J].J Theor Probab,2018,31(1):364-401.DOI:10.1007/s10959-016-0711-7.
[6] BENES M,CHALUPECKY V,MIKULA K.Geometrical image segmentation by the Allen-Cahn equation[J].Appl Numer Math,2004,51:187-205.DOI:10.1016/j.apnum.2004.05.001.
[7] DOBROSOTSKAYA J A,BERTOZZI A L.A wavelet-laplace variational technique for image deconvolution and inpainting[J].IEEE T Image Process,2008,17(5):657-663.DOI:10.1109/TIP.2008.919367..
[8] DU Qiang,JIANG Yang.Asymptotically compatible fourier spectral approximations of nonlocal Allen-Cahn equations[J].Siam J Numer Anal,2016,54(3):1899-1919.DOI:10.1137/15M1039857.
[9] LEE H G,LEE J Y.A semi-analytical fourier spectral method for the Allen-Cahn equation[J].Comput Math Appl,2014,68(3):174-184.DOI:10.1016/j.camwa.2014.05.015.
[10] XIAO Xufeng,FENG Xinlong,YUAN Jinyun.The stabilized semi-implicit finite element method for the surface Allen-Cahn equation[J].Discrete Cont Dyn-B,2017,22(7):2857-2877.DOI:10.3934/dcdsb.2017154.
[11] ZHAI Shuying,FENG Xinlong,HE Yinnian.Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method[J].Comput Phys Commun,2014,185(10):2449-2455.DOI:10.1016/j.cpc.2014.05.017.
[12] TANG Tao,YANG Jiang.Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle[J].J Comput Math,2016,34(5):471-481.DOI:10.4208/jcm.1603-m2014-0017.
[13] ADEROGBA A A,CHAPWANYA M.An explicit nonstandard finite difference scheme for the Allen-Cahn equation[J].J Differ Equ Appl,2015,21(10):875-886.DOI:10.1080/10236198.2015.1055737.
[14] STRACHOTA P,BENE M.Error estimate of the finite volume scheme for the Allen-Cahn equation[J].BIT,2018,58(2):489-507.DOI:10.1007/s10543-017-0687-4.
[15] 翁志峰,姚泽丰,赖淑琴.重心插值配点法直接求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133-140.DOI:10.11830/ISSN.1000-5013.201806043.
[16] 庄清渠,王金平.四阶常微分方程的Birkhoff配点法[J].华侨大学学报(自然科学版),2018,39(2):306-311.DOI:10.11830/ISSN.1000-5013.201707005.
[17] ZHAI Shuying,WENG Zhifeng,FENG Xinlong.Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model[J].Appl Math Model,2016,40(2):1315-1324.DOI:10.11830/ISSN.1000-5013.201806043.
[18] ZHAI Shuying,WENG Zhifeng,FENG Xinlong.Investigations on several numerical methods for the non-local Allen-Cahn equation[J].Int J Heat Mass Tran,2015,87:111-118.DOI:10.1016/j.ijheatmasstransfer.2015.03.071.
[19] WENG Zhifeng,TANG Longkun.Analysis of the operator splitting scheme for the Allen-Cahn equation[J].Numer Heat Tr B-Fund,2016,70(5):472-483.DOI:10.1080/10407790.2016.1215714.
[20] WENG Zhifeng,ZHUANG Qingqu.Numerical approximation of the conservative Allen-Cahn equation by operator splitting method[J].Math Method Appl Sci,2017,40(12):4462-4480.DOI:10.1002/mma.4317.

相似文献/References:

[1]翁智峰,姚泽丰,赖淑琴.重心插值配点法求解Allen-Cahn方程[J].华侨大学学报(自然科学版),2019,40(1):133.[doi:10.11830/ISSN.1000-5013.201806043]
 WENG Zhifeng,YAO Zefeng,LAI Shuqin.Barycentric Interpolation Collocation Method for Allen-Cahn Equation[J].Journal of Huaqiao University(Natural Science),2019,40(3):133.[doi:10.11830/ISSN.1000-5013.201806043]
[2]汪精英,邓杨芳,翟术英.利用Laplace变换求解分数阶Allen-Cahn方程[J].华侨大学学报(自然科学版),2020,41(4):549.[doi:10.11830/ISSN.1000-5013.201910013]
 WANG Jingying,DENG Yangfang,ZHAI Shuying.Numerical Solution of Fractional Allen-Cahn Equation byLaplace Transform[J].Journal of Huaqiao University(Natural Science),2020,41(3):549.[doi:10.11830/ISSN.1000-5013.201910013]
[3]邓杨芳,姚泽丰,汪精英,等.二维Allen-Cahn方程的有限差分法/配点法求解[J].华侨大学学报(自然科学版),2020,41(5):690.[doi:10.11830/ISSN.1000-5013.202001001]
 DENG Yangfang,YAO Zefeng,WANG Jingying,et al.Two Dimensional Allen-Cahn Equation Solved By FiniteDifference Method/Collocation Method[J].Journal of Huaqiao University(Natural Science),2020,41(3):690.[doi:10.11830/ISSN.1000-5013.202001001]
[4]陈心妍,张馨心,蔡耀雄.非局部Gray-Scott模型的二阶线性化差分格式[J].华侨大学学报(自然科学版),2024,45(4):524.[doi:10.11830/ISSN.1000-5013.202307024]
 CHEN Xinyan,ZHANG Xinxin,CAI Yaoxiong.Second-Order Linearized Difference Scheme for Nonlocal Gray-Scott Model[J].Journal of Huaqiao University(Natural Science),2024,45(3):524.[doi:10.11830/ISSN.1000-5013.202307024]

备注/Memo

备注/Memo:
收稿日期: 2018-10-27
通信作者: 翟术英(1986-),女,副教授,博士,主要从事高阶差分格式的构造、分数阶高效数值算法的研究.E-mail:zhaishuying123456@163.com.
基金项目: 国家自然科学基金资助项目(11701196); 华侨大学中青年教师优秀青年科技创新人才项目(ZQN YX502); 华侨大学研究生科研创新能力培养计划项目(1511422010)
更新日期/Last Update: 2019-05-20