参考文献/References:
[1] AXLER S,BOURDON P,RAMEY W.Harmonic function theory[M].New York:Springer Verlag,2000.
[2] HEINZ E.On one-to-one harmonic mappings[J].Pac J Math,1959,9(1):101-105.
[3] PARTYKA D,SAKAN K.On a variant of Heinz’s inequality for harmonic mappings of the unit disk onto bounded convex domains[J].Bull Soc Sci Lett,2009,52(2):25-36.
[4] DUREN P.Harmonic mappings in the plane[M].Cambridge:Cambridge University Press,2004:75-77.
[5] PARTYKA D,SAKAN K.Three variants of Schwarz lemma for harmonic mappings[J].Bull Soc Lett,2006,51(2):27-34.
[6] PARTYKA D,SAKAN K.Quasiconformal and Lipschitz harmonic mappings of the unit disk onto bounded convex domains[J].Anna Acad Scie Fenn Math,2014,39(2):811-830.
[7] KALAJ D.Schwarz lemma for harmonic mappings in the unit ball[J].Proc Amer Math Soc,2010,140(1):161-166.
[8] PAVLOVIC M.A Schwarz lemma for the modulus of a vector-valued analytic function[J].Proc Amer Math Soc,2011,139(3):969-973.
[9] KALAJ D,VUORINEN M.On harmonic functions and the Schwarz lemma[J].Proc Amer Math Soc,2010,140(1):161-166.
[10] BURGETH B.A Schwarz Lemma for harmonic and hyperbolic-harmonic functions in higher dimensions[J].Manu Math,1992,77(1):283-291.
[11] DUREN P.Theory of-space[M].New York:Dover Publications,2000.
相似文献/References:
[1]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[2]李东征,陈行堤.调和映照的Bloch常数[J].华侨大学学报(自然科学版),2012,33(1):103.[doi:10.11830/ISSN.1000-5013.2012.01.0103]
LI Dong-zheng,CHEN Xing-di.Bloch Constant of Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(6):103.[doi:10.11830/ISSN.1000-5013.2012.01.0103]
[3]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(6):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[4]石擎天,黄心中.双调和型映照的Landau定理[J].华侨大学学报(自然科学版),2014,35(1):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
SHI Qing-tian,HUANG Xin-zhong.Landau’s Theorem for Biharmonic-Type Mappings[J].Journal of Huaqiao University(Natural Science),2014,35(6):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
[5]王其文,黄心中.在微分算子作用下调和函数的单叶半径估计[J].华侨大学学报(自然科学版),2014,35(2):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
WANG Qi-wen,HUANG Xin-zhong.On the Estimates of Univalent Radius for Harmonic Mappings under the Differential Operator[J].Journal of Huaqiao University(Natural Science),2014,35(6):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
[6]黄赟,黄心中.某些近于凸调和函数的解析性质和系数估计[J].华侨大学学报(自然科学版),2015,36(4):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
HUANG Yun,HUANG Xin-zhong.On the Analytic Properties and Coefficient Estimate for Close-to-Convex Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2015,36(6):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
[7]黄心中,黄赟.某类调和函数的单叶半径和Landau定理[J].华侨大学学报(自然科学版),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
HUANG Xinzhong,HUANG Yun.On the Univalent Radius and Landau Theorem for Some Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(6):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
[8]王朝祥.Bloch常数的下界估计[J].华侨大学学报(自然科学版),2022,43(3):416.[doi:10.11830/ISSN.1000-5013.202012036]
WANG Chaoxiang.Estimation of Lower Bound for Bloch Constant[J].Journal of Huaqiao University(Natural Science),2022,43(6):416.[doi:10.11830/ISSN.1000-5013.202012036]
[9]李俊,陈铭新,王建飞.多重调和映射的同向两点Schwarz引理及应用[J].华侨大学学报(自然科学版),2023,44(2):264.[doi:10.11830/ISSN.1000-5013.202110011]
LI Jun,CHEN Mingxin,WANG Jianfei.Same Direction Two-Point Schwarz Lemma for Pluriharmonic Mappings and Application[J].Journal of Huaqiao University(Natural Science),2023,44(6):264.[doi:10.11830/ISSN.1000-5013.202110011]
[10]林雄,李锦成,王建飞.向量值全纯映射Schwarz引理的刚性[J].华侨大学学报(自然科学版),2023,44(6):777.[doi:10.11830/ISSN.1000-5013.202308007]
LIN Xiong,LI Jincheng,WANG Jianfei.Rigidity of Schwarz Lemma for Vector-Valued Holomorphic Mappings[J].Journal of Huaqiao University(Natural Science),2023,44(6):777.[doi:10.11830/ISSN.1000-5013.202308007]