[1]李孟华,陈行堤.非对称区间上调和函数的Schwarz引理[J].华侨大学学报(自然科学版),2017,38(6):898-902.[doi:10.11830/ISSN.1000-5013.201612009]
 LI Menghua,CHEN Xingdi.Schwarz Lemma for Harmonic Functionsin Asymmetric Interval[J].Journal of Huaqiao University(Natural Science),2017,38(6):898-902.[doi:10.11830/ISSN.1000-5013.201612009]
点击复制

非对称区间上调和函数的Schwarz引理()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第6期
页码:
898-902
栏目:
出版日期:
2017-11-20

文章信息/Info

Title:
Schwarz Lemma for Harmonic Functionsin Asymmetric Interval
文章编号:
1000-5013(2017)06-0898-05
作者:
李孟华 陈行堤
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
LI Menghua CHEN Xingdi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和函数 Schwarz引理 Poisson核 平均值定理
Keywords:
harmonic mapping Schwarz lemma Poisson kernel mean-value theorem
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.201612009
文献标志码:
A
摘要:
研究单位球到给定一般区间上的实调和函数的Schwarz型引理.运用调和函数的平均值定理,将像域在对称区间[-1,1]上的调和函数的Schwarz引理推广到在一般区间[a,b]上.作为一个应用,改进了Partyka和Sakan的一个结果,得到实调和函数的下界估计.
Abstract:
In this paper, we investigate the Schwarz lemma for real harmonic functions of the unit ball into a general interval. By appealing to the method of mean-value theorem of harmonic functions, we obtain the Schwarz lemma of harmonic functions with their image domains generalized from the symmetric interval [-1,1] to a general interval [a,b]. As an application of this result, we improve the upper bound estimate given by Partyka and Sakan. Moreover, a lower bound for this class of harmonic functions is also given.

参考文献/References:

[1] AXLER S,BOURDON P,RAMEY W.Harmonic function theory[M].New York:Springer Verlag,2000.
[2] HEINZ E.On one-to-one harmonic mappings[J].Pac J Math,1959,9(1):101-105.
[3] PARTYKA D,SAKAN K.On a variant of Heinz’s inequality for harmonic mappings of the unit disk onto bounded convex domains[J].Bull Soc Sci Lett,2009,52(2):25-36.
[4] DUREN P.Harmonic mappings in the plane[M].Cambridge:Cambridge University Press,2004:75-77.
[5] PARTYKA D,SAKAN K.Three variants of Schwarz lemma for harmonic mappings[J].Bull Soc Lett,2006,51(2):27-34.
[6] PARTYKA D,SAKAN K.Quasiconformal and Lipschitz harmonic mappings of the unit disk onto bounded convex domains[J].Anna Acad Scie Fenn Math,2014,39(2):811-830.
[7] KALAJ D.Schwarz lemma for harmonic mappings in the unit ball[J].Proc Amer Math Soc,2010,140(1):161-166.
[8] PAVLOVIC M.A Schwarz lemma for the modulus of a vector-valued analytic function[J].Proc Amer Math Soc,2011,139(3):969-973.
[9] KALAJ D,VUORINEN M.On harmonic functions and the Schwarz lemma[J].Proc Amer Math Soc,2010,140(1):161-166.
[10] BURGETH B.A Schwarz Lemma for harmonic and hyperbolic-harmonic functions in higher dimensions[J].Manu Math,1992,77(1):283-291.
[11] DUREN P.Theory of-space[M].New York:Dover Publications,2000.

相似文献/References:

[1]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[2]李东征,陈行堤.调和映照的Bloch常数[J].华侨大学学报(自然科学版),2012,33(1):103.[doi:10.11830/ISSN.1000-5013.2012.01.0103]
 LI Dong-zheng,CHEN Xing-di.Bloch Constant of Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(6):103.[doi:10.11830/ISSN.1000-5013.2012.01.0103]
[3]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
 WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(6):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[4]石擎天,黄心中.双调和型映照的Landau定理[J].华侨大学学报(自然科学版),2014,35(1):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
 SHI Qing-tian,HUANG Xin-zhong.Landau’s Theorem for Biharmonic-Type Mappings[J].Journal of Huaqiao University(Natural Science),2014,35(6):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
[5]王其文,黄心中.在微分算子作用下调和函数的单叶半径估计[J].华侨大学学报(自然科学版),2014,35(2):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
 WANG Qi-wen,HUANG Xin-zhong.On the Estimates of Univalent Radius for Harmonic Mappings under the Differential Operator[J].Journal of Huaqiao University(Natural Science),2014,35(6):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
[6]黄赟,黄心中.某些近于凸调和函数的解析性质和系数估计[J].华侨大学学报(自然科学版),2015,36(4):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
 HUANG Yun,HUANG Xin-zhong.On the Analytic Properties and Coefficient Estimate for Close-to-Convex Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2015,36(6):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
[7]黄心中,黄赟.某类调和函数的单叶半径和Landau定理[J].华侨大学学报(自然科学版),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
 HUANG Xinzhong,HUANG Yun.On the Univalent Radius and Landau Theorem for Some Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(6):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
[8]王朝祥.Bloch常数的下界估计[J].华侨大学学报(自然科学版),2022,43(3):416.[doi:10.11830/ISSN.1000-5013.202012036]
 WANG Chaoxiang.Estimation of Lower Bound for Bloch Constant[J].Journal of Huaqiao University(Natural Science),2022,43(6):416.[doi:10.11830/ISSN.1000-5013.202012036]
[9]李俊,陈铭新,王建飞.多重调和映射的同向两点Schwarz引理及应用[J].华侨大学学报(自然科学版),2023,44(2):264.[doi:10.11830/ISSN.1000-5013.202110011]
 LI Jun,CHEN Mingxin,WANG Jianfei.Same Direction Two-Point Schwarz Lemma for Pluriharmonic Mappings and Application[J].Journal of Huaqiao University(Natural Science),2023,44(6):264.[doi:10.11830/ISSN.1000-5013.202110011]
[10]林雄,李锦成,王建飞.向量值全纯映射Schwarz引理的刚性[J].华侨大学学报(自然科学版),2023,44(6):777.[doi:10.11830/ISSN.1000-5013.202308007]
 LIN Xiong,LI Jincheng,WANG Jianfei.Rigidity of Schwarz Lemma for Vector-Valued Holomorphic Mappings[J].Journal of Huaqiao University(Natural Science),2023,44(6):777.[doi:10.11830/ISSN.1000-5013.202308007]

备注/Memo

备注/Memo:
收稿日期: 2016-12-04
通信作者: 陈行堤(1976-),男,教授,博士,主要从事函数论的研究.E-mail:chxtt@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11471128); 福建省自然科学基金计划资助项目(2014J01013); 华侨大学青年教师科研提升计划资助项目(ZQN-YX110); 华侨大学研究生科研创新能力培育计划资助项目(1511313002)
更新日期/Last Update: 2017-11-20