[1]刘景良,高源,骆勇鹏,等.采用解析模态分解和小波变换的损伤识别方法[J].华侨大学学报(自然科学版),2017,38(5):643-648.[doi:10.11830/ISSN.1000-5013.201705022]
 LIU Jingliang,GAO Yuan,LUO Yongpeng,et al.Structural Damage Detection Using Analytical Mode Decomposition and Wavelet Transform[J].Journal of Huaqiao University(Natural Science),2017,38(5):643-648.[doi:10.11830/ISSN.1000-5013.201705022]
点击复制

采用解析模态分解和小波变换的损伤识别方法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第5期
页码:
643-648
栏目:
出版日期:
2017-09-20

文章信息/Info

Title:
Structural Damage Detection Using Analytical Mode Decomposition and Wavelet Transform
文章编号:
1000-5013(2017)05-0643-06
作者:
刘景良1 高源1 骆勇鹏1 郑文婷2
1. 福建农林大学 交通与土木工程学院, 福建 福州 350002;2. 福建工程学院 土木工程学院, 福建 福州 350118
Author(s):
LIU Jingliang1 GAO Yuan1 LUO Yongpeng1 ZHENG Wengting2
1. School of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 2. School of Civil Engineering, Fujian University of Technology, Fuzhou 350118, China
关键词:
损伤识别 小波变换 解析模态分解 一阶本征函数
Keywords:
damage detection wavelet transform analytical mode decomposition first order intrinsic mode function
分类号:
TU311.3
DOI:
10.11830/ISSN.1000-5013.201705022
文献标志码:
A
摘要:
针对希尔伯特-黄变换(HHT)在信号处理中存在的模态混叠现象,引入解析模态分解定理(AMD)提取时变结构响应的一阶本征函数,并构建一阶本征函数能量比指标识别结构的损伤位置.从损伤位置处的响应信号出发,引入连续小波变换和时间窗思想,提出一阶本征函数小波能量变化率指标来预测结构的损伤演化过程.通过一个刚度突变和线性变化的三层剪切型结构数值算例,对一阶本征函数能量比和一阶本征函数小波能量变化率指标进行验证.结果表明:所提出的指标能够有效识别结构的损伤位置和损伤时间.
Abstract:
Due to the problem of overlapping frequency existed in Hilbert-Huang transform(HHT), analytical mode decomposition theorem is introduced to extract the first order intrinsic mode function(IMF)from responses of time-varying structures, then the first order IMF energy ratio index is established to identify damage locations. Based on the response signal in damage location, continuous wavelet transform and time window are introduced to build the index of the first order IMF wavelet energy variation rate in order to predict the evolution of structural damage. A numerical example of three-story shear structure with abruptly and linearly varying stiffness is presented to verify the effectiveness of the two proposed indexes, and the results demonstrate that the proposed damage indexes can effectively detect the locations and time of structure damage.

参考文献/References:

[1] 王术新,姜哲.基于结构振动损伤识别技术的研究现状及进展[J].振动与冲击,2004,23(4):99-102.DOI:10.3969/j.issn.1000-3835.2004.04.024.
[2] CHIKKERUR S,CARTWRIGHT A N,GOVINDARAJU V.Fingerprint image enhancement using STFT analysis[J].Pattern Recognition,2007,40(1):198-211.DOI:10.1016/j.patcog.2006.05.036.
[3] 王忠仁,林君,李文伟.基于Wigner-Ville分布的复杂时变信号的时频分析[J].电子学报,2005,33(12):2239-2241.DOI:10.3321/j.issn:0372-2112.2005.12.032.
[4] 李秀坤,吴玉双.多分量线性调频信号的Wigner-Ville分布交叉项去除[J].电子学报,2017,45(2):315-320.DOI:10.3969/j.issn.0372-2112.2017.02.008.
[5] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[M]//The Royal Society.Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences.London:The Royal Society,1998:903-995.
[6] HUANG N E,SHEN Z,LONG S R.A new view of nonlinear water waves: The Hilbert spectrum[J].Annual Review of Fluid Mechanics,1999,31:417-457.DOI:10.1146/annurev.fluid.31.1.417.
[7] WU Z H,HUANG N E.Ensemble empirical mode decomposition: A noise assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.DOI:10.1142/S1793536909000047.
[8] 刘景良,任伟新,王佐才,等.基于同步挤压小波变换的结构瞬时频率识别[J].振动与冲击,2013,32(18):37-42.DOI:10.3969/j.issn.1000-3835.2013.18.007.
[9] CHEN Genda,WANG Zuocai.A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components[J].Mechanical Systems and Signal Processing,2012,28(2):258-279.DOI:10.1016/j.ymssp.2011.02.002.
[10] WANG Zuocai,REN Weixin,LIU Jingliang.A synchrosqueenzed wavelet transform enhanced by extended analytical mode decomposition method for dynamic signal reconstruction[J].Journal of Sound and Vibration,2013,332(22):6016-6028.DOI:10.1016/j.jsv.2013.04.026.
[11] 王佐才,任伟新.基于解析模式分解的密集工作模态参数识别[J].噪声与振动控制,2013,33(6):18-24.DOI:10.3969/j.issn.1006-1335.2013.06.005.
[12] 韩建刚,任伟新,孙增寿.基于小波包变换的梁体损伤识别[J].振动、测试与诊断,2006,26(1):5-10.DOI:10.3969/j.issn.1004-6801.2006.01.002.
[13] 韩建刚,任伟新,孙增寿.结构损伤识别的小波包分析试验研究[J].振动与冲击,2006,25(1):47-50.DOI:10.3969/j.issn.1000-3835.2006.01.011.
[14] SOYOZ S,FENG M Q.Instantaneous damage detection of bridge structures and experimental verification[J].Structural Control and Heath Monitoring,2008,15(7):958-973.DOI:10.1002/stc.229.
[15] 熊飞,程远胜,刘均.基于HHT方法的时变多自由度系统的损伤识别[J].振动、测试与诊断,2008,28(2):122-125.DOI:10.3969/j.issn.1004-6801.2008.02.009.
[16] 刘景良,任伟新,王佐才.基于同步挤压和时间窗的时变结构损伤识别[J].振动与冲击,2014,27(6):835-841.DOI:10.3969/j.issn.1004-4523.2014.06.005.
[17] 任宜春,翁璞.基于改进Hilbert-Huang变换的结构损伤识别方法研究[J].振动与冲击,2015,34(18):195-199.DOI:10.13465/j.cnki.jvs.2015.18.033.

相似文献/References:

[1]徐传忠,杨冠鲁.自适应小波算法的电力有源滤波器[J].华侨大学学报(自然科学版),2003,24(3):310.[doi:10.3969/j.issn.1000-5013.2003.03.017]
 Xu Chuanzhang,Yang Guanlu.A Power Active Filter Based on Self-Adapting Wavelet Algorithm[J].Journal of Huaqiao University(Natural Science),2003,24(5):310.[doi:10.3969/j.issn.1000-5013.2003.03.017]
[2]吕俊白.小波系数局部特征的自适应图像降噪算法[J].华侨大学学报(自然科学版),2010,31(6):636.[doi:10.11830/ISSN.1000-5013.2010.06.0636]
 Lü Jun-bai.Adaptive Algorithm for Image Denoising Based on Local Characteristic of Wavelet Coefficient[J].Journal of Huaqiao University(Natural Science),2010,31(5):636.[doi:10.11830/ISSN.1000-5013.2010.06.0636]
[3]周凯汀,郑力新.图像域阈值与维纳滤波组合的图像去噪方法[J].华侨大学学报(自然科学版),2012,33(2):157.[doi:10.11830/ISSN.1000-5013.2012.02.0157]
 ZHOU Kai-ting,ZHENG Li-xin.Image Denoising by Thresholding and Wiener Filtering in Image Domain[J].Journal of Huaqiao University(Natural Science),2012,33(5):157.[doi:10.11830/ISSN.1000-5013.2012.02.0157]
[4]蔡琼,陈鹏慧,魏武.采用小波变换的脑电图信号分析及其应用[J].华侨大学学报(自然科学版),2015,36(2):166.[doi:10.11830/ISSN.1000-5013.2015.02.0166]
 CAI Qiong,CHEN Peng-hui,WEI Wu.Analysis and Application of Electroencephalography Signal Based on Wavelet Transform[J].Journal of Huaqiao University(Natural Science),2015,36(5):166.[doi:10.11830/ISSN.1000-5013.2015.02.0166]
[5]陈萍芸,林春深.一种改进的动脉CT图像去噪方法[J].华侨大学学报(自然科学版),2015,36(4):443.[doi:10.11830/ISSN.1000-5013.2015.04.0443]
 CHEN Ping-yun,LIN Chun-shen.Research on an Improved De-Noising Method for Artery CT Images[J].Journal of Huaqiao University(Natural Science),2015,36(5):443.[doi:10.11830/ISSN.1000-5013.2015.04.0443]
[6]邵辉,苏芳茵,程海波.采用小波变换和高斯过程的肌电信号模型预测[J].华侨大学学报(自然科学版),2016,37(6):743.[doi:10.11830/ISSN.1000-5013.201606016]
 SHAO Hui,SU Fangyin,CHENG Haibo.Model Forecasting of EMG Using Wavelet Transformation and Gaussian Process[J].Journal of Huaqiao University(Natural Science),2016,37(5):743.[doi:10.11830/ISSN.1000-5013.201606016]
[7]赵尚程,张认成,杜建华,等.采用小波变换的光伏串联电弧故障检测[J].华侨大学学报(自然科学版),2017,38(1):7.[doi:10.11830/ISSN.1000-5013.201701002]
 ZHAO Shangcheng,ZHANG Rencheng,DU Jianhua,et al.Photovoltaic Series Arc Fault Detection Utilizing Wavelet Transform[J].Journal of Huaqiao University(Natural Science),2017,38(5):7.[doi:10.11830/ISSN.1000-5013.201701002]
[8]张健,黄德天,林炎明.采用稀疏表示和小波变换的超分辨率重建算法[J].华侨大学学报(自然科学版),2020,41(2):250.[doi:10.11830/ISSN.1000-5013.201908005]
 ZHANG Jian,HUANG Detian,LIN Yanming.Super-Resolution Reconstruction Algorithm Using Sparse Representation and Wavelet Transform[J].Journal of Huaqiao University(Natural Science),2020,41(5):250.[doi:10.11830/ISSN.1000-5013.201908005]

备注/Memo

备注/Memo:
收稿日期: 2017-05-13
通信作者: 刘景良(1983-),男,讲师,博士,主要从事桥梁结构健康监测的研究.E-mail:liujingliang@fafu.edu.cn.
基金项目: 国家自然科学青年基金资助项目(51608122); 福建省青年科技人才创新项目(2016J05111); 福建农林大学青年教师科研基金资助项目(113-61201405104)
更新日期/Last Update: 2017-09-20