[1]王金平,庄清渠.五阶常微分方程的Petrov-Galerkin谱元法[J].华侨大学学报(自然科学版),2017,38(3):435-440.[doi:10.11830/ISSN.1000-5013.201703027]
 WANG Jinping,ZHUANG Qingqu.Petrov-Galerkin Spectral-Element Method for Solving Fifth-Order Ordinary Differential Equations[J].Journal of Huaqiao University(Natural Science),2017,38(3):435-440.[doi:10.11830/ISSN.1000-5013.201703027]
点击复制

五阶常微分方程的Petrov-Galerkin谱元法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第3期
页码:
435-440
栏目:
出版日期:
2017-05-20

文章信息/Info

Title:
Petrov-Galerkin Spectral-Element Method for Solving Fifth-Order Ordinary Differential Equations
文章编号:
1000-5013(2017)03-0435-06
作者:
王金平 庄清渠
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WANG Jinping ZHUANG Qingqu
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
五阶常微分方程 Petrov-Galerkin谱元法 基函数 数值实验
Keywords:
fifth-order ordinary differential equation Petrov-Galerkin spectral-element method basis functions numerical experiments
分类号:
O241.8
DOI:
10.11830/ISSN.1000-5013.201703027
文献标志码:
A
摘要:
通过区间剖分,降低数值逼近多项式的阶数,构造满足试探函数空间和检验函数空间的基函数,使得离散问题所对应的线性系统的系数矩阵是稀疏的,并可以进行有效地求解.数值算例验证了五阶常微分方程的Petrov-Galerkin谱元法的有效性和高精度.
Abstract:
The polynomial order in the numerical approximation is reduced by partitioning the interval into several subintervals, and appropriate basis functions of the trial and test spaces are constructed. Which leads to a linear system with sparse coefficient matrix. Then, an efficient computational process is introduced to solve the linear system.Numerical experiment results demonstrate the high accuracy and effectiveness to the Petrov-Galerkin spectral-element method.

参考文献/References:

[1] GOTTLIEB D,ORSZAG S A.Numerical analysis of spectral methods: Theory and applications[M].Philadelphia:SIAM,1977:1-179.
[2] BERNARDI C,MADAY Y.Approximations spectrales de probl`emes aux limites elliptiques[M].Berlin:Springer-Verlag,1992:1-248.
[3] GUO Benyu.Spectral methods and their applications[M].Singapore:World Scientific,1998:100-358.
[4] KARNIADAKIS G,SHERWIN S J.Spectral/hp element methods for computational fluid dynamics[M].London:Oxford University Press,2005:187-348.
[5] SHEN Jie,TANG Tao.Spectral and high-order methods with applications[M].Beijing:Science Press of China,2006:183-298.
[6] CANUTO C,HUSSAINI M Y,QUARTERONI A,et al.Spectral methods: Fundamentals in single domains[M].Berlin:Springer-Verlag,2006:401-470.
[7] CANUTO C,HUSSAINI M Y,QUARTERONI A,et al.Spectral methods: Evolution to complex geometries and applications to fluid dynamics[M].Berlin:Springer Verlag,2007:237-357.
[8] MA Heping,SUN Weiwei.A Legendre-Petrov-Galerkin and chebyshev collocation method for third-order differential equations[J].SIAM J NUMER ANAL,2000,38(5):1425-1438.
[9] MA Heping,SUN Weiwei.Optimal error estiamtes of the Legendre-Petrov-Galerkin method for the Korteweg-De Vries equation[J].SIAM J NUMER ANAL,2001,39(4):1380-1394.
[10] SHEN Jie.A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KDV equation[J].SIAM J NUMER ANAL,2003,41(5):1595-1619.
[11] SHEN Jie,WANG Lilian.Laguerre and composite Legendre-Laguerre dual-Petrov-Galerkin methods for third-order equations[J].Discrete and Continuous Dynamical Systems Series B,2006,6(6):1381-1402.
[12] ZHENG Chunxiong,WEN Xin,HAN Houde.Numerical solution to a linearized KDV equation on unbounded domain[J].Numerical Methods for Partial Differential Equations,2008,24(2):383-399.
[13] 吴胜,庄清渠.三阶微分方程的Legendre-Petrov-Galerkin谱元方法[J].华侨大学学报(自然科学版),2013,34(3):344-348.

备注/Memo

备注/Memo:
收稿日期: 2016-01-17
通信作者: 庄清渠(1980-),男,副教授,博士,主要从事微分方程数值解法的研究.E-mail:qqzhuang@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11501224); 华侨大学中青年教师科研提升资助计划(ZQN-PY201); 华侨大学研究生科研创新能力培育计划项目(1400213008)
更新日期/Last Update: 2017-05-20