参考文献/References:
[1] LEWY H.On the nonvanishing of the Jacobian in certain one-to-one mappings[J].Bulletin of the American Mathematical Society,1936,42(10):689-692.
[2] CLUNIE J G,SHEIL-SMALL T.Sheil-small, harmonic univalent functions[J].Annales Academi Scientiarum Fennic Series A I,1984,9(1):3-25.
[3] PONNUSAMY S,SINGH V.Convolution properties of some classes of analytic functions[J].Journal of Mathematical Sciences,1998,89(1):1008-1020.
[4] KUMAR R,DORFF M,GUPTA S,et al.Convolution properties of some harmonic mappings in the right half-plane[J].Bulletin of the Malaysian Mathematical Sciences Society,2016,39(1):439-455.
[5] DORFF M.Convolutions of planar harmonic convex mappings[J].Complex Variables Theory and Application An International Journal,2001,45(3):263-271.
[6] DORFF M,NOWAK M,WOLOSZKIEWICZ M.Convolutions of harmonic convex mappings[J].Complex Variables and Elliptic Equations,2012,57(5):489-503.
[7] LI Liulan,PONNUSAMY S.Solution to an open problem on convolutions of harmonic mappings[J].Complex Variables and Elliptic Equations,2013,58(12):1647-1653.
[8] JIANG Yueping,RASILA A,SUN Yong.A note on convexity of convolutions of harmonic mappings[J].Bulletin of the Korean Mathematical Society,2015,52(6):1925-1935.
[9] LI Liulan,PONNUSAMY S.Convolutions of slanted half-plane harmonic mappings[J].Analysis(Munich),2013,33(2):159-176.
[10] RAHMAN Q I,SCHMEISSER G.Analytic theory of polynomials, London mathematical society monographs new series[M].Oxford:Oxford University Press,2002:375-376.
相似文献/References:
[1]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[2]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(3):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[3]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(3):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
[4]李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
LI Dong-zheng,CHEN Xing-di.Landau Theorem for Planar Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(3):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
[5]占龙俊,黄心中.调和映照与像域为线性连结的剪切函数的关系[J].华侨大学学报(自然科学版),2015,36(5):603.[doi:10.11830/ISSN.1000-5013.2015.05.0603]
ZHAN Long-jun,HUANG Xin-zhong.Relation Between Harmonic Mapping and Its Shear Function With Linearly Connected Image Domain[J].Journal of Huaqiao University(Natural Science),2015,36(3):603.[doi:10.11830/ISSN.1000-5013.2015.05.0603]
[6]王改华,李涛,吕朦,等.采用无监督学习算法与卷积的图像分类模型[J].华侨大学学报(自然科学版),2018,39(1):146.[doi:10.11830/ISSN.1000-5013.201703109]
WANG Gaihua,LI Tao,Lü Meng,et al.Image Classification Model Using Unsupervised Learning Algorithm and Convolution[J].Journal of Huaqiao University(Natural Science),2018,39(3):146.[doi:10.11830/ISSN.1000-5013.201703109]
[7]李鸿萍.调和映照与调和K-拟共形映照的边界Schwarz引理[J].华侨大学学报(自然科学版),2022,43(2):279.[doi:10.11830/ISSN.1000-5013.202011023]
LI Hongping.Boundary Schwarz Lemma for Harmonic Mappings and Harmonic K-Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2022,43(3):279.[doi:10.11830/ISSN.1000-5013.202011023]