[1]胡春华,王忠林,王春梅,等.可产生多翼吸引子的混沌系统及其电路实现[J].华侨大学学报(自然科学版),2017,38(3):300-305.[doi:10.11830/ISSN.1000-5013.201703004]
 HU Chunhua,WANG Zhonglin,WANG Chunmei,et al.Construction of Chaotic System With Multi-Winged Attractors and Its Circuit Implementation[J].Journal of Huaqiao University(Natural Science),2017,38(3):300-305.[doi:10.11830/ISSN.1000-5013.201703004]
点击复制

可产生多翼吸引子的混沌系统及其电路实现()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第3期
页码:
300-305
栏目:
出版日期:
2017-05-20

文章信息/Info

Title:
Construction of Chaotic System With Multi-Winged Attractors and Its Circuit Implementation
文章编号:
1000-5013(2017)03-0300-06
作者:
胡春华12 王忠林3 王春梅4 孙平2
1. 滨州学院 电气工程系, 山东 滨州 256603;2. 山东师范大学 物理与电子科学学院, 山东 济南 250014;3. 滨州学院 航空工程学院, 山东 滨州 256603;4. 滨州学院 信息工程学院, 山东 滨州 256603
Author(s):
HU Chunhua12 WANG Zhonglin3 WANG Chunmei4 SUN Ping2
1. Department of Electronics Engineering, Binzhou University, Binzhou 256603, China; 2. School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 3. College of Aeronautical Engineering, Binzhou University, Binzhou 256603, China; 4. College of Information Engineering, Binzhou University, Binzhou 256603, China
关键词:
混沌系统 多翼吸引子 电子电路 Lyapunov指数 Multism 12平台
Keywords:
chaotic system multi-winged attractor electronic circuit Lyapunov index Multism 12 simulation platform
分类号:
TN914.42
DOI:
10.11830/ISSN.1000-5013.201703004
文献标志码:
A
摘要:
构造一个只有一个零平衡点的新混沌系统,与广义Lorenz系统族相比,该系统可以产生单、双、三及四翼的混沌吸引子.研究表明:当参数d=2时,其平衡点为鞍结点;当参数d=5时,其平衡点为鞍焦点,且系统的散度随着参数d的变化而改变,不是一个固定值.在Multism 12仿真平台上设计该系统的电子电路,仿真结果与数值仿真、动力学特性分析结论一致,进一步验证该混沌系统的混沌特性.
Abstract:
A novel chaotic system with single zero-balanced point is constructed in this research. The system is different from the generalized Lorenz system with its divergence, symmetry and the stability of zero-balanced point. The new system is able to produce single-winged, double-winged, three-winged and four-winged chaotic attractors. In addition, a simulation circuit of the system is designed to implement the proposed system. The circuit simulation results are inagreement with numerical simulation and dynamic analysis, which verifies the chaotic characteristics of the proposed system.

参考文献/References:

[1] LORENZ E N.Deterministic non-perodic flows[J].Atoms Sci,1963,20:130.
[2] CHEN Guangrong,UETA T.Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos,1999,9(7):1465-1466.
[3] LYU Jinhu,CHEN Guangrong.A new chaotic attractor coined[J].International Journal of Bifurcation and Chaos,2002,12(3):659-661.
[4] LIU Chongxin,LIU Tao,LIU Ling,et al.A new chaotic attracator[J]. Chaos Solitons and Fractals,2004,22(2):1031-1038.
[5] 蔡国梁,谭振梅,周维怀,等.一个新的混沌系统的动力学分析及混沌控制[J].物理学报,2007,56(11):6230-6237.
[6] 王忠林.一个混沌系统设计及其FPGA实现[J].滨州学院学报,2008,24(6):89-93.
[7] 吴淑花,刘振永,张若洵,等.一个新三维系统的电路实现及其混沌控制[J].重庆邮电大学学报(自然科学版),2012,24(4):473-478.
[8] 黄沄,罗小华,张鹏.一种新的具有光滑二次函数多涡卷混沌系统及其FPGA实现[J].重庆邮电大学学报(自然科学版),2012,24(4):479-482.
[9] 乔晓华,包伯成.三维四翼广义增广Lü系统[J].物理学报,2009,58(12):8152-8159.
[10] WANG Guangyi,QIU Shuisheng,LI Hongwei.A new chaotic system and its circuit realization[J].Chinese Physics B,2006,15(12):2872-2877.
[11] 王忠林,姚福安,李祥峰.基于FPGA的一个超混沌系统的设计与实现[J].山东大学学报(理学版),2008,43(12):89-91.
[12] 王杰智,陈增强,袁著祉.一个新的混沌系统及其性质研究[J].物理学报,2006,55(8):3956-3963.
[13] LYU Jinhu,CHEN Guangrong,CHENG Dong,et al.Bridge the gap between the Lorenz and the Chen system[J].International Journal of Bifurcation and Chaos,2002,12(12):2917-2926.
[14] LYU Jinhu,CHEN Guangrong,ZHANG Suochun.Controlling in between the Lorenz and the Chen system[J].Theological Studies in Japan,2011,21(2):77-79.

相似文献/References:

[1]傅桂元,李钟慎.一类参数未知混沌系统的自适应控制[J].华侨大学学报(自然科学版),2010,31(2):145.[doi:10.11830/ISSN.1000-5013.2010.02.0145]
 FU Gui-yuan,LI Zhong-shen.Adaptive Control for a Class of Chaotic Systems with Unknown Parameters[J].Journal of Huaqiao University(Natural Science),2010,31(3):145.[doi:10.11830/ISSN.1000-5013.2010.02.0145]

备注/Memo

备注/Memo:
收稿日期: 2016-11-16
通信作者: 胡春华(1979-),女,副教授,博士,主要从事EDA技术与混沌理论应用的研究.E-mail:bzhuchunhua@126. com.
基金项目: 山东省自然科学基金资助项目(ZR2014FQ019); 山东省滨州市科技发展计划项目(2014ZC0208); 滨州学院科研基金资助项目(BZXYG1618)
更新日期/Last Update: 2017-05-20