[1]薛雷.一类常微分方程的数值解法[J].华侨大学学报(自然科学版),2017,38(1):131-134.[doi:10.11830/ISSN.1000-5013.201701026]
 XUE Lei.Numerical Solution for Class of Ordinary Differential Equations[J].Journal of Huaqiao University(Natural Science),2017,38(1):131-134.[doi:10.11830/ISSN.1000-5013.201701026]
点击复制

一类常微分方程的数值解法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第38卷
期数:
2017年第1期
页码:
131-134
栏目:
出版日期:
2017-01-09

文章信息/Info

Title:
Numerical Solution for Class of Ordinary Differential Equations
文章编号:
1000-5013(2017)01-0131-04
作者:
薛雷
山东财经大学 东方学院, 山东 泰安 271000
Author(s):
XUE Lei
Dongfang College, Shandong University of Finance and Economics, Taian 271000, China
关键词:
Sturm-Liouville微分方程 边界值 正解 微分算子
Keywords:
Sturm-Liouville differential equation boundary value positive solution differential operator
分类号:
O246
DOI:
10.11830/ISSN.1000-5013.201701026
文献标志码:
A
摘要:
研究一类Sturm-Liouville微分方程的数值解.针对d/(dx)[p(x)(dT)/(dx)]+(λρ(x)-q(x))T=0微分方程,提出用更细的粒度估算渐近的特征值,并对该方法进行论证.将该方法应用到等式证明中,结果表明:证明方法是有效的.
Abstract:
One kind of numerical solution for Sturm-Liouville differential equation is studied. As to d/(dx)[p(x)(dT)/(dx)]+(λρ(x)-q(x))T=0. By raising finer granularity for this differential equation to estimate asymptotic eigen value, we prove our conclusion. The result shows that it works well.

参考文献/References:

[1] BONHEURE D,GOMES J M,HABETS P.Multiple positive solutions of superlinear elliptic problems with sign-changing weight[J].Journal of Differential Equations,2005,214(1):36-64.
[2] KHOLKIN A M,ROFE-BEKETOV F S.On spectrum of differential operator with block-triangular matrix coefficients[J].Journal of Mathematical Physics Analysis Geometry,2014,10(1):44-63.
[3] BASKAKOV A G,DIDENKO V B.Spectral analysis of differential operators with unbounded periodic coefficients[J].Differential Equations,2015,51(3):325-341.
[4] GRUBB G.Fractional Laplacians on domains, a development of H?rmander’s theory of μ-transmission pseudodifferential operators[J].Advances in Mathematics,2014,268(18):478-528.
[5] GRUBB G.Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudo differential operators[J].Mathematics,2014,7(7):1649-1682.
[6] MIRONOV A E.Self-adjoint commuting ordinary differential operators[J].Inventiones Mathematicae,2014,197(2):1-15.
[7] 徐有基.一类二阶广义Sturm-Liouville边界条件多点边值问题的可解性[J].西北师范大学学报(自然科学版),2008,44(4):1-5.
[8] 陈东晓,陈应生.二阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2013,34(5):587-590.
[9] FELTRIN G,ZANOLIN F.Existence of positive solutions in the superlinear case via coincidence degree: The neumann and the periodic boundary value problems[J].Advances in Differential Equations,2015,20(9/10):937-982.
[10] HARUTYUNYAN T N.The dependence of the eigenvalues of the Sturm-Liouville problem on boundary conditions[J].Matematicki Vesnik,2008,60(4):285-294.

备注/Memo

备注/Memo:
收稿日期: 2016-12-05
通信作者: 薛雷(1982-),男,讲师,博士,主要从事微积分及经济数学的研究.E-mail:xue-xiao@163.com.
基金项目: 国家自然科学基金管理科学面上资助项目(70971014)
更新日期/Last Update: 2017-01-20