[1]邵辉,苏芳茵,程海波.采用小波变换和高斯过程的肌电信号模型预测[J].华侨大学学报(自然科学版),2016,37(6):743-748.[doi:10.11830/ISSN.1000-5013.201606016]
 SHAO Hui,SU Fangyin,CHENG Haibo.Model Forecasting of EMG Using Wavelet Transformation and Gaussian Process[J].Journal of Huaqiao University(Natural Science),2016,37(6):743-748.[doi:10.11830/ISSN.1000-5013.201606016]
点击复制

采用小波变换和高斯过程的肌电信号模型预测()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第37卷
期数:
2016年第6期
页码:
743-748
栏目:
出版日期:
2016-11-20

文章信息/Info

Title:
Model Forecasting of EMG Using Wavelet Transformation and Gaussian Process
文章编号:
1000-5013(2016)06-0743-06
作者:
邵辉 苏芳茵 程海波
华侨大学 信息与科学工程学院, 福建 厦门 361021
Author(s):
SHAO Hui SU Fangyin CHENG Haibo
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
关键词:
表面肌电信号 高斯过程 小波变换 模型预测
Keywords:
surface electromyogram Gaussian process wavelet transform model prediction
分类号:
TP391
DOI:
10.11830/ISSN.1000-5013.201606016
文献标志码:
A
摘要:
根据表面肌电信号的生物电信号特点,采用小波变换和高斯过程建模的方法对表面肌电信号进行建模和预测.对非线性的表面肌电信号利用拟合能力强大的高斯过程进行建模,预测效果较好,但所需运算时间长.针对其运算时间长的缺点进行改进,将预处理后的表面肌电信号小波分解,对分解后的系数高斯建模,然后重构.实验结果表明:该改进方法在响应时间和预测误差方面效果明显.
Abstract:
According to the characteristics of the surface EMG signal, this paper uses wavelet transform and Gauss process modeling method to model and predict the surface EMG signal. The nonlinear surface EMG signal is used to model the fitting ability of the Gauss process, and the prediction effect is better, but the operation time is longer. To overcome the shortcomings of the long computation time, the wavelet decomposition of the surface EMG signal is processed, and the coefficients of the decomposition are modeled in Guassian. Experimental results show that the improved method has obvious effect on response time and prediction error.

参考文献/References:

[1] 张启忠,席旭刚,罗志增.多重分形分析在肌电信号模式识别中的应用[J].传感技术学报,2013,26(2):282-288.
[2] RASMUSSEN C E,WILLIAMS C K I.Gaussian processes for machine learning(adaptive computation and machine learning)[M].American:MIT Press,2005:49-51.
[3] KOCIJAN J,GRANCHAROVA A.Application of gaussian processes to the modelling and control in process engineering[M]//Studies in Computational Intelligence.Germany:Springer Berlin Heidelberg,2014:155-190.
[4] PARK C,HUANG Jianhua,DING Yu.Domain decomposition approach for fast gaussian process regression of large spatial data sets[J].Journal of Machine Learning Research,2011,12(4):1697-1728.
[5] HE Zhikun,LIU Guangbin,ZHAO Xijing,et al.Temperature model for FOG zero-bias using Gaussian process regression[J].Advances in Intelligent Systems and Computing,2012,180(1):37-45.
[6] 李鹏,宋申民,段广仁.改进的平方根UKF及其在交会对接中的应用[J].电机与控制学报,2010,14(11):100-104.
[7] 孙斌,姚海涛,刘婷.基于高斯过程回归的短期风速预测[J].中国电机工程学报,2012,32(29):104-109.
[8] WILLIAMS C K I,RASMUSSEN C E.Gaussian processes for regression[J].Advances in Neural Information Processing Systems Pages,1996,27(6):514-520.
[9] MURRAY-SMITH R,JOHANSEN T A,SHORTEN R.On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures[C]//Proceedings of the European Control Conference.Karslruhe:IEEE Press,1999:BA-14.
[10] JU? K,SMITH M,RASMUSSEN R,et al.Gaussian process model based predictive control[C]//Proceedings of the American Control Conference.Boston:IEEE Press,2004:2214-2219.
[11] 张惠泽.基于高斯过程的pH中和过程控制研究[D].哈尔滨:哈尔滨工业大学,2010:26-29.
[12] 陈宝林.最优化理论与算法[M].北京:清华大学出版社,1989:280-288.

备注/Memo

备注/Memo:
收稿日期: 2016-01-14
通信作者: 邵辉(1973-),女,副教授,博士,主要从事机器人控制、运动规划、智能控制、非线性系统LPV建模的研究.E-mail:shaohuihull@163.com.
基金项目: 福建省科技计划项目(2015H0026); 教育部留学回国人员科研启动基金资助项目(Z1534004); 福建省泉州市科技计划项目(2013Z34)
更新日期/Last Update: 2016-11-20