参考文献/References:
[1] SHANTHI I,VALARMATHI M L.SAR image despeckling using possibilistic fuzzy C-means clustering and edge detection in bandelet domain[J].Neural Computing and Applications,2013,23(1):279-291.
[2] 杨杨,戴明,周箩鱼,等.基于非下采样Bandelet变换的多聚焦图像融合[J].吉林大学学报(工学版),2014,44(2):525-530.
[3] PANDIAN K,SOUNDARA K,KUMAR E,et al.Reconstruction of missing data in VHR images using Bandelet and exemplar based inpainting strategies[C]//3rd International Conference on Computer Technology and Development.Chengdu:[s.n.],2011:25-27.
[4] MAALOUF A,LARABI M C.Bandelet based stereo image coding[C]//International Conference of Acoustics, Speech, and Signal Processing.Dallas:IEEE Press,2010:698-701.
[5] MAALOUF A,LARABI M C.Image retargeting using a Bandelet-based similarity measure[C]//International Conference on Acoustics, Speech, and Signal Processing.Dallas:IEEE Press,2010:942-945.
[6] JANSEN M,CHOI H,LAVU S,et al.Multiscale image processing using normal triangulated meshes[C]//International Conference on Image Processing.Thessaloniki:IEEE Press,2001:229-232.
[7] WAKIN M,ROMBERG J,CHOI H,et al.Rate distortion optimized image compression using wedgelets[C]//International Confernce on Image Processing.Newyork:IEEE Press,2002:237-240.
[8] CANDES E,DONOHO D.New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J].Pure Application of Math,2004,57(4):219-266.
[9] 潘晓明,余俊,杨钊,等.一种将线性粘弹微分型本构方程应用到ABAQUS的方法[J].华侨大学学报(自然科学版),2010,31(5):570-575.
[10] ARTEAGA J A,VELASCO M J.Design of image codec based on Bandelet transform using a NIOS Ⅱ processor[J].Ingeniare Revista Chilena De Ingenieria,2012,20(2):211-219.
[11] 綦科,谢冬青.基于第二代Bandelet变换的抗几何攻击图像水印[J].自动化学报,2012,38(10):1646-1653.
[12] 刘绪崇,罗永,王建新,等.基于第二代Bandelet变换的图像认证水印算法[J].通信学报,2010,31(12):123-129.
相似文献/References:
[1]郑厚生.关于Bezier曲线性质及曲线拟合问题[J].华侨大学学报(自然科学版),1992,13(4):519.[doi:10.11830/ISSN.1000-5013.1992.04.0519]
Zheng Housheng.The property of Bezier Curve and the Problem of Curve Fitting[J].Journal of Huaqiao University(Natural Science),1992,13(1):519.[doi:10.11830/ISSN.1000-5013.1992.04.0519]
[2]吴胜,庄清渠.三阶微分方程的Legendre-Petrov-Galerkin谱元方法[J].华侨大学学报(自然科学版),2013,34(3):344.[doi:10.11830/ISSN.1000-5013.2013.03.0344]
WU Sheng,ZHUANG Qing-qu.Legendre-Petrov-Galerkin Spectral Element Method for Third-Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(1):344.[doi:10.11830/ISSN.1000-5013.2013.03.0344]
[3]李敏,庄清渠.半无界条状区域四阶方程的Laguerre-Legendre混合谱逼近[J].华侨大学学报(自然科学版),2013,34(4):471.[doi:10.11830/ISSN.1000-5013.2013.04.0471]
LI Min,ZHUANG Qing-qu.Mixed Laguerre-Legendre Spectral Approximation of the Fourth-Order Equations in a Semi-Infinite Channel[J].Journal of Huaqiao University(Natural Science),2013,34(1):471.[doi:10.11830/ISSN.1000-5013.2013.04.0471]
[4]王金平,庄清渠.五阶常微分方程的Petrov-Galerkin谱元法[J].华侨大学学报(自然科学版),2017,38(3):435.[doi:10.11830/ISSN.1000-5013.201703027]
WANG Jinping,ZHUANG Qingqu.Petrov-Galerkin Spectral-Element Method for Solving Fifth-Order Ordinary Differential Equations[J].Journal of Huaqiao University(Natural Science),2017,38(1):435.[doi:10.11830/ISSN.1000-5013.201703027]