[1]阙玉琴,陈行堤.一类调和映照的系数估计[J].华侨大学学报(自然科学版),2015,36(4):484-488.[doi:10.11830/ISSN.1000-5013.2015.04.0484]
 QUE Yu-qin,CHEN Xing-di.On the Coefficient Estimates for One Subclass of Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2015,36(4):484-488.[doi:10.11830/ISSN.1000-5013.2015.04.0484]
点击复制

一类调和映照的系数估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第4期
页码:
484-488
栏目:
出版日期:
2015-07-15

文章信息/Info

Title:
On the Coefficient Estimates for One Subclass of Harmonic Mappings
文章编号:
1000-5013(2015)04-0484-05
作者:
阙玉琴 陈行堤
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
QUE Yu-qin CHEN Xing-di
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
单叶调和映照 稳定调和映照 系数估计 增长定理
Keywords:
harmonic mapping stable harmonic mapping coefficient estimate distortion theorem
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.2015.04.0484
文献标志码:
A
摘要:
在单叶调和映照的系数猜想的基础上,获得单叶调和映照在第二复伸张满足标准化条件下的系数估计,结果渐进于单叶函数的系数估计,建立了两个猜想的联系,并获得此类映照的增长和覆盖定理.
Abstract:
We study the coefficient estimates of a subclass of harmonic mappings, which second complex dilatations satisfy some normal condition. The result is asymptotic to the estimates of univalent analytic functions, the relationship of the coefficient conjecture of these two class mappings is established. We also obtain the growth and covering theorem for this class of mappings.

参考文献/References:

[1] CLUNIE J G,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A L,1984,9(1):3-25.
[2] DUREN P.Univalent functions[M].New York:Springer-Verlag,1983:17-21.
[3] DUREN P.Harmonic mappings in the plane[M].Cambridge:Cambridge University Press,2004:86-110
[4] de BRANGES L.A proof of the Bieberbach conjecture[J].Acta Math,1985,154(1/2):137-152.
[5] GREINER P.Geometric properties of harmonic shears[J].Comput Methods Funct Theory,2004,4(1):77-96.
[6] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Bull Amer Math Soc,1936,42(1):689-692.
[7] HERNÁNDEZ R,MARTÍN M J.Stable geometric properties of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
[8] PONNUSAMY S,KALIRAJ A S.On the coefficient conjecture of clunie and sheil-small on univalent harmonic mappings [DB/OL][2014-03-22] .http://arxiv.org/abs/1403.5619.
[9] ROGOSINSKI W.On the coefficients of subordinate functions[J].Proc London Math Soc,1990,42(1):237-248.
[10] SHEIL-SMALL T.Constants for planar harmonic mappings[J].J London Math Soc,1990,42(1):237-248.
[11] WANG Xiao-tian,LIANG Xiang-qian,ZHANG Yu-qin.Precise coefficient estimates for close-to-convex harmonic univalent mappings[J].J Math Anal Appl,2001,263(2):501-509.

相似文献/References:

[1]黄心中.给定复伸张单叶调和映照的面积偏差[J].华侨大学学报(自然科学版),2007,28(2):208.[doi:10.3969/j.issn.1000-5013.2007.02.025]
 HUANG Xin-zhong.Area Distortion for Univalent Harmonic Mappings with Given Dilatation[J].Journal of Huaqiao University(Natural Science),2007,28(4):208.[doi:10.3969/j.issn.1000-5013.2007.02.025]
[2]石擎天,黄心中.调和映照与其剪切函数的单叶性[J].华侨大学学报(自然科学版),2013,34(3):334.[doi:10.11830/ISSN.1000-5013.2013.03.0334]
 SHI Qing-tian,HUANG Xin-zhong.Univalent Relation between Harmonic Mapping and Its Shear Function[J].Journal of Huaqiao University(Natural Science),2013,34(4):334.[doi:10.11830/ISSN.1000-5013.2013.03.0334]
[3]潘旭玲,黄心中.一类新的Salagean-Type单叶调和映照的特征[J].华侨大学学报(自然科学版),2013,34(4):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
 PAN Xu-ling,HUANG Xin-zhong.On the Property of a New Class of Salagean-Type Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2013,34(4):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
[4]潘旭玲,黄心中.一类单位圆盘上单叶调和映照的延拓定理[J].华侨大学学报(自然科学版),2013,34(6):701.[doi:10.11830/ISSN.1000-5013.2013.06.0701]
 PAN Xu-ling,HUANG Xin-zhong.Extension Theorems for Some Univalent Harmonic Mappings on the Unit Disk[J].Journal of Huaqiao University(Natural Science),2013,34(4):701.[doi:10.11830/ISSN.1000-5013.2013.06.0701]

备注/Memo

备注/Memo:
收稿日期: 2014-10-27
通信作者: 陈行堤(1976-),男,副教授,博士,主要从事函数论的研究.E-mail:chxtt@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11471128); 福建省自然科学基金计划资助项目(2014J01013); 华侨大学中青年教师科研提升资助计划(ZQN-YX110)
更新日期/Last Update: 2015-07-20