[1]黄赟,黄心中.某些近于凸调和函数的解析性质和系数估计[J].华侨大学学报(自然科学版),2015,36(4):478-483.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
 HUANG Yun,HUANG Xin-zhong.On the Analytic Properties and Coefficient Estimate for Close-to-Convex Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2015,36(4):478-483.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
点击复制

某些近于凸调和函数的解析性质和系数估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第36卷
期数:
2015年第4期
页码:
478-483
栏目:
出版日期:
2015-07-15

文章信息/Info

Title:
On the Analytic Properties and Coefficient Estimate for Close-to-Convex Harmonic Mappings
文章编号:
1000-5013(2015)04-0478-06
作者:
黄赟 黄心中
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
HUANG Yun HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和函数 稳定近于凸 系数估计 单叶半径
Keywords:
harmonic mapping stable close-to-convex coefficient estimate univalent radius
分类号:
O174.51
DOI:
10.11830/ISSN.1000-5013.2015.04.0478
文献标志码:
A
摘要:
研究单位圆盘D上某些具有稳定近于凸的调和函数 f(z)=h(z)+g(z)^-解析部分 h(z)满足 Re{1+ z(h″(z))/(h’(z))}>c,-1/2<c≤0时的解析表示和系数估计表达式.对其复伸张w(z)为一次多项式时,给出了f(z)的稳定近于凸的判别条件,并且推广了Bshouty和Nagpal等的结果.特别地,当Re{1+z(h″)/(h’)}>c,-1/2<c≤0,w(z)=z2时,估计了f=h+(-overg)在单位圆盘上的稳定近于凸半径.
Abstract:
Research analytic representing formula and coefficient estimates for h(z)with Re{1+z(h″(z))/(h’(z))}>c, -1/2<c≤0, where h is the analytic part of harmonic mappings f(z)=h(z)+g(z)^- that are stable close-to-convex property on unit disk D. If the dilatation function w(z)is a linear function, the stable close-to-convex criterion is proved. The results improve the one made by Shouty and Nagpal. Moreover, we also obtain the stable close-to-convex radius estimate for f=h+(-overg)with Re{1+z(h″(z))/(h’(z))}>c, -1/2<c≤0 and w(z)=z2 on the unit disk D.

参考文献/References:

[1] BSHOUTY D,LYZZAIK A.Close-to-convexity criteria for planar harmonic mappings[J].Complex Analysis and Operator Theory,2011,5(3):767-774.
[2] MOCANU P T.Injectivity conditions in the complex plane[J].Complex Anal Oper Theory,2011,5(3):759-766.
[3] NAGPAL S,RAVICHANDRAN V.On a subclass of close-to-convex harmonic mappings[J].Complex Variables and Elliptic Equations,2014,59(2):204-216.
[4] BSHOUTY D,JOSHI S S,JOSHI S B.On close-to-convex harmonic mappings[EB/OL].[2012-1-11] .http://dx.doi.org/10.1080/17476933.2011.647002.
[5] BSHOUTY D,LYZZAIK A.Problems and conjectures in planar harmonic mappings[J].J Analysis,2010,18:69-81.
[6] HERNÁNDEZ R,MARTÍN M T.Stable geometric properties of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
[7] 石擎天,黄心中.调和映照与其剪切函数的单叶性[J].华侨大学学报:自然科学版,2013,34(3):334-338.
[8] 王其文,黄心中.在微分算子作用下调和函数的单叶半径估计[J].华侨大学学报:自然科学版,2014,35(2):227-231.
[9] KAPLAN W.Close-to-convex schlicht functions[J].Mich Math J,1952,1(2):169-185.
[10] CLUNIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I Math,1984,9:3-25.

相似文献/References:

[1]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(4):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[2]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
 WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(4):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[3]王其文,黄心中.在微分算子作用下调和函数的单叶半径估计[J].华侨大学学报(自然科学版),2014,35(2):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
 WANG Qi-wen,HUANG Xin-zhong.On the Estimates of Univalent Radius for Harmonic Mappings under the Differential Operator[J].Journal of Huaqiao University(Natural Science),2014,35(4):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
[4]李孟华,陈行堤.非对称区间上调和函数的Schwarz引理[J].华侨大学学报(自然科学版),2017,38(6):898.[doi:10.11830/ISSN.1000-5013.201612009]
 LI Menghua,CHEN Xingdi.Schwarz Lemma for Harmonic Functionsin Asymmetric Interval[J].Journal of Huaqiao University(Natural Science),2017,38(4):898.[doi:10.11830/ISSN.1000-5013.201612009]
[5]黄心中,黄赟.某类调和函数的单叶半径和Landau定理[J].华侨大学学报(自然科学版),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
 HUANG Xinzhong,HUANG Yun.On the Univalent Radius and Landau Theorem for Some Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(4):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]

备注/Memo

备注/Memo:
收稿日期: 2015-01-05
通信作者: 黄心中(1957-),男,教授,博士,主要从事函数论的研究.E-mail:huangxz@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11471128); 福建省自然科学基金资助项目(2014J01013)
更新日期/Last Update: 2015-07-20