参考文献/References:
[1] BSHOUTY D,LYZZAIK A.Close-to-convexity criteria for planar harmonic mappings[J].Complex Analysis and Operator Theory,2011,5(3):767-774.
[2] MOCANU P T.Injectivity conditions in the complex plane[J].Complex Anal Oper Theory,2011,5(3):759-766.
[3] NAGPAL S,RAVICHANDRAN V.On a subclass of close-to-convex harmonic mappings[J].Complex Variables and Elliptic Equations,2014,59(2):204-216.
[4] BSHOUTY D,JOSHI S S,JOSHI S B.On close-to-convex harmonic mappings[EB/OL].[2012-1-11] .http://dx.doi.org/10.1080/17476933.2011.647002.
[5] BSHOUTY D,LYZZAIK A.Problems and conjectures in planar harmonic mappings[J].J Analysis,2010,18:69-81.
[6] HERNÁNDEZ R,MARTÍN M T.Stable geometric properties of analytic and harmonic functions[J].Math Proc Camb Phil Soc,2013,155(2):343-359.
[7] 石擎天,黄心中.调和映照与其剪切函数的单叶性[J].华侨大学学报:自然科学版,2013,34(3):334-338.
[8] 王其文,黄心中.在微分算子作用下调和函数的单叶半径估计[J].华侨大学学报:自然科学版,2014,35(2):227-231.
[9] KAPLAN W.Close-to-convex schlicht functions[J].Mich Math J,1952,1(2):169-185.
[10] CLUNIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I Math,1984,9:3-25.
相似文献/References:
[1]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(4):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[2]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(4):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[3]王其文,黄心中.在微分算子作用下调和函数的单叶半径估计[J].华侨大学学报(自然科学版),2014,35(2):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
WANG Qi-wen,HUANG Xin-zhong.On the Estimates of Univalent Radius for Harmonic Mappings under the Differential Operator[J].Journal of Huaqiao University(Natural Science),2014,35(4):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
[4]李孟华,陈行堤.非对称区间上调和函数的Schwarz引理[J].华侨大学学报(自然科学版),2017,38(6):898.[doi:10.11830/ISSN.1000-5013.201612009]
LI Menghua,CHEN Xingdi.Schwarz Lemma for Harmonic Functionsin Asymmetric Interval[J].Journal of Huaqiao University(Natural Science),2017,38(4):898.[doi:10.11830/ISSN.1000-5013.201612009]
[5]黄心中,黄赟.某类调和函数的单叶半径和Landau定理[J].华侨大学学报(自然科学版),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
HUANG Xinzhong,HUANG Yun.On the Univalent Radius and Landau Theorem for Some Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(4):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]