参考文献/References:
[1] 贾冀.基于聚类的图像分割与配准研究[D].西安:西安电子科技大学,2013:1-2.
[2] RAM K,SIVASWAMY J.Multi-space clustering for segmentation of exudates in retinal color photographs[C]//31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Minneapolis:IEEE Press,2009:1437-1440.
[3] NAGY B,ANTAL B,HAJDU A.Image database clustering to improve microaneurysm detection in color fundus images[C]//25th International Symposium on Computer-Based Medical Systems.Rome:IEEE Press,2012:1-6.
[4] RANAMUKA N G,MEEGAMA R G N.Detection of hard exudates from diabetic retinopathy images using fuzzy logic[J].IET Image Processing,2013,7(2):121-130.
[5] GIANCARDO L,MERIAUDEAU F,KARNOWSKI T P,et al.Automatic retina exudates segmentation without a manually labelled training set[C]//International Symposium on Biomedical Imaging.Chicago:IEEE Press,2011:1396-1400.
[6] 刘芳,代钦,石祥滨,等.基于超像素的快速 MRF 红外行人图像分割算法[J].计算机仿真,2012,29(10):26-29.
[7] ACHANTA R,SHAJI A,SMITH K,et al.SLIC superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282.
[8] 刘进立.SAR 图像分割与特征提取方法研究[D].沈阳:辽宁大学,2013:25-26.
[9] 杨静,高嘉伟,梁吉业,等.基于数据场的改进 DBSCAN 聚类算法[J].计算机科学与探索,2012,6(10):903-911.
[10] 陈刚,刘秉权,吴岩.一种基于高斯分布的自适应DBSCAN算法[J].微电子学与计算机,2013,30(3):27-30,34.
[11] 于亚飞,周爱武.一种改进的 DBSCAN 密度算法[J].计算机技术与发展,2011,21(2):30-33.
[12] 赵文,夏桂书,苟智坚,等.一种改进的DBSCAN算法[J].四川师范大学学报:自然科学版,2013,36(2):312-316.
[13] 张丽杰.具有稳定饱和度的DBSCAN算法[J].计算机应用研究,2014,31(7):1973-1975.
[14] BANDYOPADHYAY S K,PAUL T U.Segmentation of brain tumour from MRI image-analysis of K-means and DBSCAN clustering[J].International Journal of Research in Engineering and Science,2013,1(1):48-57.
[15] SAE-TANG W,CHIRACHARIT W,KUMWILAISAK W.Exudates detection in fundus image using non-uniform illumination background subtraction[C]//TENCON 2010-2010 IEEE Region 10 Conference.Fukuoka:IEEE Press,2010:204-209.
[16] 张育雄.基于几何约束和熵率的超像素分割[D].天津:天津大学,2012:30-33.
[17] LI Hui-qi,CHUTATAPE O.Automated feature extraction in color retinal images by a model based approach[J].IEEE Transactions on Biomedical Engineering,2004,51(2):246-254.
[18] WALTER T,KLEIN J C,MASSIN P,et al.A contribution of image processing to the diagnosis of diabetic retinopathy: Detection of exudates in color fundus images of the human retina[J].IEEE Transactions on Medical Imaging,2002,21(10):1236-1243.
[19] 高玮玮,沈建新,王玉亮.眼底图像中硬性渗出自动检测方法的对比[J].南京航空航天大学学报,2013,45(1):55-61.
相似文献/References:
[1]钱卫星,黄丽亚.二维Otsu自适应阈值快速算法的改进[J].华侨大学学报(自然科学版),2015,36(4):427.[doi:10.11830/ISSN.1000-5013.2015.04.0427]
QIAN Wei-xing,HUANG Li-ya.Improvement for 2D Otsu Adaptive Threshold Fast Algorithm[J].Journal of Huaqiao University(Natural Science),2015,36(4):427.[doi:10.11830/ISSN.1000-5013.2015.04.0427]
[2]钱卫星,黄丽亚.采用二维Otsu直方图斜分快速算法实现方式的改进[J].华侨大学学报(自然科学版),2016,37(1):88.[doi:10.11830/ISSN.1000-5013.2016.01.0088]
QIAN Weixing,HUANG Liya.Improved Implementations for 2D Otsu Histogram Fast Algorithm[J].Journal of Huaqiao University(Natural Science),2016,37(4):88.[doi:10.11830/ISSN.1000-5013.2016.01.0088]
[3]谢超,谢明红.应用局部自适应阈值方法检测圆形标志点[J].华侨大学学报(自然科学版),2016,37(2):134.[doi:10.11830/ISSN.1000-5013.2016.02.0134]
XIE Chao,XIE Minghong.Circular Mark Point Detecting Research Based on Local Adaptive Threshold[J].Journal of Huaqiao University(Natural Science),2016,37(4):134.[doi:10.11830/ISSN.1000-5013.2016.02.0134]