[1]陈敏,王晶海.二阶线性系非振动的充要条件[J].华侨大学学报(自然科学版),2014,35(3):358-360.[doi:10.11830/ISSN.1000-5013.2014.03.0358]
 CHEN Min,WANG Jing-hai.Necessary and Sufficient Condition of Non-Oscillation for Second-Order Linear System[J].Journal of Huaqiao University(Natural Science),2014,35(3):358-360.[doi:10.11830/ISSN.1000-5013.2014.03.0358]
点击复制

二阶线性系非振动的充要条件()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第3期
页码:
358-360
栏目:
出版日期:
2014-05-16

文章信息/Info

Title:
Necessary and Sufficient Condition of Non-Oscillation for Second-Order Linear System
文章编号:
1000-5013(2014)03-0358-03
作者:
陈敏 王晶海
1. 福建工程学院 数理系, 福建 福州 350118;2. 福州大学 数学与计算机科学学院, 福建 福州 350116
Author(s):
CHEN Min1 WANG Jing-hai2
1. Department of Mathematics and Physics, Fujian University of Technology, Fuzhou 350118, China; 2. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
关键词:
周期系数 二阶线性系 非振动 充要条件 微分方程
Keywords:
periodic coefficient second-order linear system non-oscillation necessary and sufficient condition ordinary differential equation
分类号:
O175.1
DOI:
10.11830/ISSN.1000-5013.2014.03.0358
文献标志码:
A
摘要:
研究周期系数二阶线性微分方程系非振动理论,给出周期系数二阶线性微分方程系非振动的充要条件,以及判别方程系非振动的充分条件.实例证明具有较好的实用性.
Abstract:
The theories of non-oscillation for second-order linear system with periodic coefficient are investigated. One necessary and sufficient condition and a sufficient criterion condition of non-oscillation for second-order linear system with periodic coefficient are given. Examples show that the obtained result has better practicability.

参考文献/References:

[1] PHILOS C G. Oscillation theorems for linear differential equations of second order[J]. Arch Math,1989,53(1):482-492.
[2] JAROD J.An oscillation test for a class of a linear neutral differential equations[J].Math Anal,1991,159(1):406-417.
[3] YU Jian-she,WANG Zhi-cheng.Some further results on oscillation of neutral differential equations[J].Bull Austral Math Soc,1992,46(1):49-157.
[4] GUORI I.On the oscillatory behavior of solutions of certain nonlinear and linear delay differential equations[J].Nonlinear Analysis,1984,8(1):429-439.
[5] QIAN C,LADAS G.Oscillation in differential equations with positive and negative coefficients[J].Canad Math Bull,1990,33(1):442-450.
[6] MAGNUS W,WINKLER S.Hill’s equation[M].New York:Interscience Publishers,1966:23-28.
[7] National Bureau of Standards. Table relating to mathieu function[J]. New York:Columbia University Press,1951:86-97.
[8] 史金麟.周期系数二阶线性微分方程的稳定性[J].数学物理学报,2000,20(1):130-139.
[9] 张俊祖,葛键.关于二阶线性齐次微分方程解的非振动性研究[J].西安联合大学学报,2001,4(2):40-43.
[10] 孔淑霞.二阶线性微分方程解的振动性[J].衡水学院学报,2010,12(1):1-4.

备注/Memo

备注/Memo:
收稿日期: 2014-02-14
通信作者: 陈敏(1977-),男,讲师,主要从事应用数学的研究.E-mail:fjlssh@126.com.
基金项目: 国家自然科学基金资助项目(11201075)
更新日期/Last Update: 2014-05-20