参考文献/References:
[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Uspekhi Mat Nauk,1948,3(2):216-219.
[2] CLUNIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I Math,1984,9:3-25.
[3] CHEN S,PONNUSAMY S,WANG X.Coefficient estimates and Landou-Bloch’s constant for planar harmonic mappings[J].Bull Malaysian Math Science Soc,2011,34(2):255-265.
[4] BSHOUTY D,LYZZAIK A.Problems and conjectures in planar harmonic mappings[J].J Analysis,2010,18:69-81.
[5] CHEN S,PONNUSAMY S,WANG X.Recent results on harmonic and p-harmonic mappings[J].J Analysis,2010,18:99-128.
[6] ABDULHADI Z,MUHANNA Y A.Landau’s theorem for biharmonic mappings[J].J Math Anal Appl,2008,338(1):705-709.
[7] ABDULHADI Z,MUHANNA Y A,KHURI S.On some properties of solutions of the biharmonic equation[J]. Appied Mathematics and Computation,2006,177(1):346-351.
[8] ABDULHADI Z,MUHANNA Y A,KHURI S.On univalent solutions of the biharmonic equation[J].Journal of Inequalities and Applications,2005,5:469-478.
[9] 夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报:自然科学版,2011,32(2):218-221.
[10] CHEN S,PONNUSAMY S,WANG X.Landau’s theorem for certain biharmonic mappings[J].Applied Mathematics and Computation,2009,208(28):427-433.
[11] LIU Ming-sheng.Landau’s theorems for biharmonic mappings[J].Complex Variables and Elliptic Equations,2008,53(9):843-855.
相似文献/References:
[1]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(2):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[2]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[3]石擎天,黄心中.双调和型映照的Landau定理[J].华侨大学学报(自然科学版),2014,35(1):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
SHI Qing-tian,HUANG Xin-zhong.Landau’s Theorem for Biharmonic-Type Mappings[J].Journal of Huaqiao University(Natural Science),2014,35(2):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
[4]黄赟,黄心中.某些近于凸调和函数的解析性质和系数估计[J].华侨大学学报(自然科学版),2015,36(4):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
HUANG Yun,HUANG Xin-zhong.On the Analytic Properties and Coefficient Estimate for Close-to-Convex Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2015,36(2):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
[5]黄心中,黄赟.某类调和函数的单叶半径和Landau定理[J].华侨大学学报(自然科学版),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
HUANG Xinzhong,HUANG Yun.On the Univalent Radius and Landau Theorem for Some Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(2):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
[6]薛雷.一类常微分方程的数值解法[J].华侨大学学报(自然科学版),2017,38(1):131.[doi:10.11830/ISSN.1000-5013.201701026]
XUE Lei.Numerical Solution for Class of Ordinary Differential Equations[J].Journal of Huaqiao University(Natural Science),2017,38(2):131.[doi:10.11830/ISSN.1000-5013.201701026]
[7]李孟华,陈行堤.非对称区间上调和函数的Schwarz引理[J].华侨大学学报(自然科学版),2017,38(6):898.[doi:10.11830/ISSN.1000-5013.201612009]
LI Menghua,CHEN Xingdi.Schwarz Lemma for Harmonic Functionsin Asymmetric Interval[J].Journal of Huaqiao University(Natural Science),2017,38(2):898.[doi:10.11830/ISSN.1000-5013.201612009]