[1]王其文,黄心中.在微分算子作用下调和函数的单叶半径估计[J].华侨大学学报(自然科学版),2014,35(2):227-231.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
 WANG Qi-wen,HUANG Xin-zhong.On the Estimates of Univalent Radius for Harmonic Mappings under the Differential Operator[J].Journal of Huaqiao University(Natural Science),2014,35(2):227-231.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
点击复制

在微分算子作用下调和函数的单叶半径估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第35卷
期数:
2014年第2期
页码:
227-231
栏目:
出版日期:
2014-03-20

文章信息/Info

Title:
On the Estimates of Univalent Radius for Harmonic Mappings under the Differential Operator
文章编号:
1000-5013(2014)02-0227-05
作者:
王其文 黄心中
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WANG Qi-wen HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和函数 微分算子 单叶半径 系数估计
Keywords:
harmonic mapping differential operator univalent radius coefficient estimate
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.2014.02.0227
文献标志码:
A
摘要:
基于单叶调和函数系数模估计的猜想, 在调和函数f(z)=h(z)+g(z)^-的系数模满足猜想条件下,研究 f(z)在L=z?/(?z)-(-overz)?/(?(-overz))作用下的单叶半径问题,分别得到精确的单叶半径表达式.结果表明:在系数模估计满足更一般表达式的条件下,同样也能得到在L作用下L(f)的精确单叶半径估计.
Abstract:
Let f(z)=h(z)+g(z)^- be a harmonic mapping on the unit disk D={z||z|<1}, L represents the differential operator L=z?/(?z)-(-overz)?/(?(-overz)). Under the coefficients satisfying two famous conjecture bounds for univalent harmonic functions on D, we obtain two sharp univalent radii for Lf(z)=z(?f)/(?z)-(-overz)(?(-overf))/(?(-overz)). Moreover, with the condition that the coefficients satisfying one general expression, we also obtain the similar sharp result.

参考文献/References:

[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Uspekhi Mat Nauk,1948,3(2):216-219.
[2] CLUNIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I Math,1984,9:3-25.
[3] CHEN S,PONNUSAMY S,WANG X.Coefficient estimates and Landou-Bloch’s constant for planar harmonic mappings[J].Bull Malaysian Math Science Soc,2011,34(2):255-265.
[4] BSHOUTY D,LYZZAIK A.Problems and conjectures in planar harmonic mappings[J].J Analysis,2010,18:69-81.
[5] CHEN S,PONNUSAMY S,WANG X.Recent results on harmonic and p-harmonic mappings[J].J Analysis,2010,18:99-128.
[6] ABDULHADI Z,MUHANNA Y A.Landau’s theorem for biharmonic mappings[J].J Math Anal Appl,2008,338(1):705-709.
[7] ABDULHADI Z,MUHANNA Y A,KHURI S.On some properties of solutions of the biharmonic equation[J]. Appied Mathematics and Computation,2006,177(1):346-351.
[8] ABDULHADI Z,MUHANNA Y A,KHURI S.On univalent solutions of the biharmonic equation[J].Journal of Inequalities and Applications,2005,5:469-478.
[9] 夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报:自然科学版,2011,32(2):218-221.
[10] CHEN S,PONNUSAMY S,WANG X.Landau’s theorem for certain biharmonic mappings[J].Applied Mathematics and Computation,2009,208(28):427-433.
[11] LIU Ming-sheng.Landau’s theorems for biharmonic mappings[J].Complex Variables and Elliptic Equations,2008,53(9):843-855.

相似文献/References:

[1]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(2):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[2]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
 WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[3]石擎天,黄心中.双调和型映照的Landau定理[J].华侨大学学报(自然科学版),2014,35(1):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
 SHI Qing-tian,HUANG Xin-zhong.Landau’s Theorem for Biharmonic-Type Mappings[J].Journal of Huaqiao University(Natural Science),2014,35(2):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
[4]黄赟,黄心中.某些近于凸调和函数的解析性质和系数估计[J].华侨大学学报(自然科学版),2015,36(4):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
 HUANG Yun,HUANG Xin-zhong.On the Analytic Properties and Coefficient Estimate for Close-to-Convex Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2015,36(2):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
[5]黄心中,黄赟.某类调和函数的单叶半径和Landau定理[J].华侨大学学报(自然科学版),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
 HUANG Xinzhong,HUANG Yun.On the Univalent Radius and Landau Theorem for Some Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(2):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
[6]薛雷.一类常微分方程的数值解法[J].华侨大学学报(自然科学版),2017,38(1):131.[doi:10.11830/ISSN.1000-5013.201701026]
 XUE Lei.Numerical Solution for Class of Ordinary Differential Equations[J].Journal of Huaqiao University(Natural Science),2017,38(2):131.[doi:10.11830/ISSN.1000-5013.201701026]
[7]李孟华,陈行堤.非对称区间上调和函数的Schwarz引理[J].华侨大学学报(自然科学版),2017,38(6):898.[doi:10.11830/ISSN.1000-5013.201612009]
 LI Menghua,CHEN Xingdi.Schwarz Lemma for Harmonic Functionsin Asymmetric Interval[J].Journal of Huaqiao University(Natural Science),2017,38(2):898.[doi:10.11830/ISSN.1000-5013.201612009]

备注/Memo

备注/Memo:
收稿日期: 2012-10-17
通信作者: 黄心中(1957-),男,教授,主要从事函数论的研究.E-mail:huangxz@hqu.edu.cn.
基金项目: 福建省自然科学基金资助项目(2011J0101)
更新日期/Last Update: 2014-03-20