[1]付宝英,王启志.自适应粒子群优化BP神经网络的变压器故障诊断[J].华侨大学学报(自然科学版),2013,34(3):262-266.[doi:10.11830/ISSN.1000-5013.2013.03.0262]
 FU Bao-ying,WANG Qi-zhi.Transformer Fault Diagnosis of Adaptive Particle SwarmOptimization BP Neural Network[J].Journal of Huaqiao University(Natural Science),2013,34(3):262-266.[doi:10.11830/ISSN.1000-5013.2013.03.0262]
点击复制

自适应粒子群优化BP神经网络的变压器故障诊断()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第3期
页码:
262-266
栏目:
出版日期:
2013-05-20

文章信息/Info

Title:
Transformer Fault Diagnosis of Adaptive Particle SwarmOptimization BP Neural Network
文章编号:
1000-5013(2013)03-0262-05
作者:
付宝英 王启志
华侨大学 机电及自动化学院, 福建 厦门 361021
Author(s):
FU Bao-ying WANG Qi-zhi
College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
关键词:
变压器 故障诊断 BP神经网络 粒子群算法
Keywords:
transformer fault diagnosis BP neural network particle swarm algorithm
分类号:
TP183;TP301
DOI:
10.11830/ISSN.1000-5013.2013.03.0262
文献标志码:
A
摘要:
在分析粒子群参数特征的基础上,提出自适应粒子群优化算法,使用自适应粒子群优化BP神经网络,建立基于自适应粒子群优化BP神经网络(PSO-BP)的变压器故障诊断系统.通过对52组训练样本和28组测试样本的仿真实验,可知自适应PSO-BP法能提高变压器故障诊断的准确率,有效减小网络的误差精度.
Abstract:
Based on the analysis of the particle swarm parameter characteristic, adaptive particle swarm optimization algorithm is put forward. Using adaptive particle swarm optimization back propagation(PSO-BP)neural network, transformer fault diagnosis system is built up based on adaptive particle swarm optimization BP neural network. By the simulation experiment using 52 groups of training samples and 28 groups of test samples, it can be seen that the adaptive PSO-BP method can improve the transformer fault diagnosis accuracy and reduce the network error precision effectively.

参考文献/References:

[1] 回敬,律方成.将具有可信度的BP神经网络应用于变压器故障诊断[J].电力科学与工程,2010,26(2):9-13.
[2] SHI Y,EBERHART R C.A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation.Alaska:Achorage,1998:69-73.
[3] 崔长彩,李兵,张认成.粒子群优化算法[J].华侨大学学报:自然科学版,2006,27(4):343-346.
[4] 杨道武,李海如,向卫东,等.基于改进PSO-BP混合算法的电力变压器故障诊断[J].电力科学与技术学报,2011,26(1):99-103.
[5] 王晓霞,王涛.基于粒子群优化神经网络的变压器故障诊断[J].高电压技术,2008,34(11):2362-2367.
[6] EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory[J].Insititute of Electrical and Electronics Engineers,1995(10):39-43.
[7] 刘晓津.基于支持向量机和油中溶解气体分析的变压器故障诊断[D].天津:天津大学,2007:53-55.
[8] 吴宏崎,周妮娜,王春英.基于RBF神经网络的变压器故障诊断及MATLAB仿真研究[J].科学技术与工程,2010,10(5):1249-1251.
[9] 程加堂,熊伟,段志梅,等.灰色神经网络在变压器故障诊断中的应用[J].高压电器,2010,46(8):56-58.

相似文献/References:

[1]冯远静,李良福,冯祖仁.粗糙集CMAC神经网络故障诊断策略[J].华侨大学学报(自然科学版),2004,25(3):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
 Feng Yuanjing,Li Liangfu,Feng Zuren.Rough Set-Based CMAC Neural Network for Fault Diagrosis[J].Journal of Huaqiao University(Natural Science),2004,25(3):318.[doi:10.3969/j.issn.1000-5013.2004.03.023]
[2]卢小芬,方瑞明.变压器局部放电在线检测中DSI干扰抑制[J].华侨大学学报(自然科学版),2005,26(1):35.[doi:10.3969/j.issn.1000-5013.2005.01.009]
 Lu Xiaofen,Fang Ruiming.Suppression of Discrete Spectral Interference in Partial Discharge of Transformer during On-Line Detection[J].Journal of Huaqiao University(Natural Science),2005,26(3):35.[doi:10.3969/j.issn.1000-5013.2005.01.009]
[3]姚若苹,余尤好,陈培民,等.11相无刷励磁机故障工况的谐波分析[J].华侨大学学报(自然科学版),2007,28(2):127.[doi:10.3969/j.issn.1000-5013.2007.02.005]
 YAO Ruo-ping,YU You-hao,CHEN Pei-ming,et al.Harmonic Analysis of the Fault Cases in 11-Phase Brushless Exciter Based on FFT[J].Journal of Huaqiao University(Natural Science),2007,28(3):127.[doi:10.3969/j.issn.1000-5013.2007.02.005]
[4]刘少谦,黄宜坚.应用时间序列分析的液压溢流阀故障诊断法[J].华侨大学学报(自然科学版),2007,28(3):228.[doi:10.3969/j.issn.1000-5013.2007.03.002]
 LIU Shao-qian,HUANG Yi-jian.Fault Diagnosis of Hydraulic Relief Valve Using Time Series Analysis[J].Journal of Huaqiao University(Natural Science),2007,28(3):228.[doi:10.3969/j.issn.1000-5013.2007.03.002]
[5]蔡奇志,黄宜坚.三谱切片在调速阀故障诊断中的应用[J].华侨大学学报(自然科学版),2009,30(1):16.[doi:10.11830/ISSN.1000-5013.2009.01.0016]
 CAI Qi-zhi,HUANG Yi-jian.Fault Diagnosis of the Speed Control Valve Using the Slices of Trispectrum[J].Journal of Huaqiao University(Natural Science),2009,30(3):16.[doi:10.11830/ISSN.1000-5013.2009.01.0016]
[6]蒋雨燕,黄宜坚.调速阀故障诊断的AR双谱定阶方法比较[J].华侨大学学报(自然科学版),2009,30(2):123.[doi:10.11830/ISSN.1000-5013.2009.02.0123]
 JIANG Yu-yan,HUANG Yi-jian.Comparison of Different Methods of Determining the Order of Autoregressive Bi-Spectrum[J].Journal of Huaqiao University(Natural Science),2009,30(3):123.[doi:10.11830/ISSN.1000-5013.2009.02.0123]
[7]成琴,王启志.变压器油中溶解气体的智能诊断[J].华侨大学学报(自然科学版),2010,31(3):260.[doi:10.11830/ISSN.1000-5013.2010.03.0260]
 CHENG Qin,WANG Qi-zhi.Intelligent Diagnosis of Dissolved Gases in Transformer Oil[J].Journal of Huaqiao University(Natural Science),2010,31(3):260.[doi:10.11830/ISSN.1000-5013.2010.03.0260]
[8]王理停,黄宜坚.关联维数的超声波电机故障诊断[J].华侨大学学报(自然科学版),2011,32(4):368.[doi:10.11830/ISSN.1000-5013.2011.04.0368]
 WANG Li-ting,HUANG Yi-jian.Fault Diagnosis of Ultrasonic Motor Based on Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2011,32(3):368.[doi:10.11830/ISSN.1000-5013.2011.04.0368]
[9]高宇,黄宜坚.采用关联维的溢流阀故障诊断[J].华侨大学学报(自然科学版),2012,33(3):241.[doi:10.11830/ISSN.1000-5013.2012.03.0241]
 GAO Yu,HUANG Yi-jian.Fault Diagnosis of Relief Valve by Using Correlation Dimension[J].Journal of Huaqiao University(Natural Science),2012,33(3):241.[doi:10.11830/ISSN.1000-5013.2012.03.0241]
[10]马洁,党爱民,李刚,等.基于MSPM的故障诊断技术研究现状与展望[J].华侨大学学报(自然科学版),2012,33(6):601.[doi:10.11830/ISSN.1000-5013.2012.06.0601]
 MA Jie,DANG Ai-min,LI Gang,et al.Research Status and Prospect of Fault Diagnosis Technology Based on MSPM[J].Journal of Huaqiao University(Natural Science),2012,33(3):601.[doi:10.11830/ISSN.1000-5013.2012.06.0601]

备注/Memo

备注/Memo:
收稿日期: 2012-04-20
通信作者: 王启志(1971-),男,副研究员,主要从事先进智能控制方面的研究.E-mail:wangqz@hqu.edu.cn.
基金项目: 福建省自然科学基金资助项目(A0640004)
更新日期/Last Update: 2013-05-20