[1]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225-229.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
 WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(2):225-229.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
点击复制

某些调和函数的系数估计与像区域的近于凸性质()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第34卷
期数:
2013年第2期
页码:
225-229
栏目:
出版日期:
2013-03-20

文章信息/Info

Title:
Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions
文章编号:
1000-5013(2013)02-0225-05
作者:
王其文 黄心中
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
WANG Qi-wen HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和函数 拟共形映照 系数不等式 近于凸
Keywords:
harmonic mapping quasiconformal mapping coefficient inequality close-to-convex
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.2013.02.0225
文献标志码:
A
摘要:
研究定义在单位圆盘D={z||z|<1}上的调和函数类C2H(λ),得到C2H(λ)类中的函数为调和拟共形映照的一个充分条件,并给出调和函数的解析部分、共轭解析部分的系数估计.在调和映照系数模满足一定的条件下,给出该类函数的近于凸单叶半径与星像单叶半径估计,主要结果改进和推广了Kalaj等的相应结论.
Abstract:
Let C2H(λ)be the harmonic mappings on the unit disk D={z||z|<1}. In this paper, we first find one sufficient condition for them to be harmonic quasiconformal mappings and give their analytical part and conjugate part’s coefficient estimate. Next, under one coefficient bound condition for harmonic functions, we find the lower bound estimates for their close-to-convex and star-like radius in their image domains. Our results improve and generalize the one made by Kalaj recently.

参考文献/References:

[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Uspekhi Mat Nauk,1948,3(2):216-219.
[2] BSHOUTY D,LYZZAIK A.Problems and conjectures in planar harmonic mappings[J].J Analysis,2010,18:69-81.
[3] CLINIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Math,1984,9:3-25.
[4] PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Ann Acad Sci Fenn Math,2002,27:365-372.
[5] KALAJ D,PAVLOVIC M.Boundary correspondence under harmonic quasiconformal diffeomorphisms of a half plane[J].Ann Acad Sci Fenn Math,2005,30:159-165.
[6] 黄心中.单位圆盘上的调和拟共形同胚[J].数学年刊,2008,29A(4):519-524.
[7] 朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报:自然科学版,2011,32(6):705-709.
[8] CHEN S,PONNUSAMY S,WANG X.Coefficient estimates and Landou-Bloch’s constant for planar harmonic mappings[J].Bull Malaysian Math Science Soc,2011,34(2):255-265.
[9] DORFF M,NOWAK M.Landau’s theorem for planar harmonic mappings[J].Comput Methods Funct Theory,2004,4(1):151-158.
[10] LIU Ming-sheng.Landau’s theorem for planar harmonic mappings[J].Computers and Mathe-Matics with Applications,2009,57:1142-1146.

相似文献/References:

[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
 Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(2):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
 Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(2):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
 Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
 LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(2):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(2):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[6]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(2):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[7]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(2):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[8]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(2):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[9]潘旭玲,黄心中.一类新的Salagean-Type单叶调和映照的特征[J].华侨大学学报(自然科学版),2013,34(4):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
 PAN Xu-ling,HUANG Xin-zhong.On the Property of a New Class of Salagean-Type Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2013,34(2):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
[10]潘旭玲,黄心中.一类单位圆盘上单叶调和映照的延拓定理[J].华侨大学学报(自然科学版),2013,34(6):701.[doi:10.11830/ISSN.1000-5013.2013.06.0701]
 PAN Xu-ling,HUANG Xin-zhong.Extension Theorems for Some Univalent Harmonic Mappings on the Unit Disk[J].Journal of Huaqiao University(Natural Science),2013,34(2):701.[doi:10.11830/ISSN.1000-5013.2013.06.0701]
[11]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(2):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]

备注/Memo

备注/Memo:
收稿日期: 2012-05-29
通信作者: 黄心中(1957-),男,教授,主要从事函数论的研究.E-mail:huangxz@hqu.edu.cn.
基金项目: 福建省自然科学基金资助项目(2011J0101)
更新日期/Last Update: 2013-03-20