参考文献/References:
[1] LEWY H.On the non-vanishing of the Jacobian in certain one-to-one mappings[J].Uspekhi Mat Nauk,1948,3(2):216-219.
[2] BSHOUTY D,LYZZAIK A.Problems and conjectures in planar harmonic mappings[J].J Analysis,2010,18:69-81.
[3] CLINIE J,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Math,1984,9:3-25.
[4] PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Ann Acad Sci Fenn Math,2002,27:365-372.
[5] KALAJ D,PAVLOVIC M.Boundary correspondence under harmonic quasiconformal diffeomorphisms of a half plane[J].Ann Acad Sci Fenn Math,2005,30:159-165.
[6] 黄心中.单位圆盘上的调和拟共形同胚[J].数学年刊,2008,29A(4):519-524.
[7] 朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报:自然科学版,2011,32(6):705-709.
[8] CHEN S,PONNUSAMY S,WANG X.Coefficient estimates and Landou-Bloch’s constant for planar harmonic mappings[J].Bull Malaysian Math Science Soc,2011,34(2):255-265.
[9] DORFF M,NOWAK M.Landau’s theorem for planar harmonic mappings[J].Comput Methods Funct Theory,2004,4(1):151-158.
[10] LIU Ming-sheng.Landau’s theorem for planar harmonic mappings[J].Computers and Mathe-Matics with Applications,2009,57:1142-1146.
相似文献/References:
[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(2):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(2):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(2):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(2):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[6]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(2):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[7]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(2):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[8]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(2):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[9]潘旭玲,黄心中.一类新的Salagean-Type单叶调和映照的特征[J].华侨大学学报(自然科学版),2013,34(4):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
PAN Xu-ling,HUANG Xin-zhong.On the Property of a New Class of Salagean-Type Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2013,34(2):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
[10]潘旭玲,黄心中.一类单位圆盘上单叶调和映照的延拓定理[J].华侨大学学报(自然科学版),2013,34(6):701.[doi:10.11830/ISSN.1000-5013.2013.06.0701]
PAN Xu-ling,HUANG Xin-zhong.Extension Theorems for Some Univalent Harmonic Mappings on the Unit Disk[J].Journal of Huaqiao University(Natural Science),2013,34(2):701.[doi:10.11830/ISSN.1000-5013.2013.06.0701]
[11]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(2):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]