参考文献/References:
[1] MALEKNEJAD K.A new approach to the numerical solution of Volterra integral equations by using bernstein’s approximation[J].Commun Nonlinear Sci Numer Simul,2011,16(2):647-655.
[2] YOUSEFI S A,BEHROOZIFAR M.Operational matrices of bernstein polynomials and their applications[J].Internat J Systems Sci,2010,41(6):709-716.
[3] MALEKNEJAD K,HASHEMIZADEH E,BASIRAT B.Computational method based on bernstein operational matrices for nonlinear Volterra-Fredholm-hammerstein integral equations[J].Commun Nonlinear Sci Numer Simul,2011,17(1):52-61.
[4] DELVES L M,MOHAMED J L.Computational methods for integral equations[M].Cambridge:Cambridge University Press,1985.
[5] SCHIAVANE P,CONSTANDA C,MIODUCHOWSKI A.Integral methods in science and engineering[M].Boston:Birkhäuser Boston,2002.
[6] RAZZAGHI M.The legendre wavelets operational matrix of integration[J].Int J Syst Sci,2001,32(4):495-502.
[7] MALEKNEJA K.An efficient numerical approximation for the linear class of Fredholm integro-differential equations based on Cattani’s method[J].Commun Nonlinear Sci Numer Simulat,2011,16(7):2672-2679.
[8] MALEKNEJAD K. A Bernstein operational matrix approach for solving a system of high order linear Volterra- Fredholm integro-differential equations[J].Mathematical and Computer Modelling,2012,55(3/4):1363-1372.
[9] PHILLIPS G M.Interpolation and approximation by polynomials[M].New York:Springerr,2003.
相似文献/References:
[1]牛红玲,郝玲,余志先.算子矩阵法求高阶弱奇异积分微分方程数值解[J].华侨大学学报(自然科学版),2013,34(5):581.[doi:10.11830/ISSN.1000-5013.2013.05.0581]
NIU Hong-ling,HAO ling,YU Zhi-xian.Operational Matrix Method for Solving the Numerical Solution of High Order Integro-Differential Equation with Weakly Singular[J].Journal of Huaqiao University(Natural Science),2013,34(5):581.[doi:10.11830/ISSN.1000-5013.2013.05.0581]