参考文献/References:
[1] CHEN Huai-hui,GAUTHIER P M,HENGARTNER W.Bloch constants for planar harmonic mappings[J].Proc Amer Math Soc,2000,128(11):3231-3240.
[2] AHLFORS L V.复分析[M].北京:机械工业出版社,2005.
[3] LANDAU E.Der picard-schottysche satz und die blochsche konstanten[M].Berlin:Sitzungsber Press Akad Wiss,1926:467-474.
[4] CHEN Huai-hui,GAUTHIER P M.The Landau theorem and Bloch theorem for planar harmonic and pluriharmonic mappings[J].Proc Amer Math Soc,2011,139(2):583-595.
[5] GRIGORYAN A.Landau and Bloch theorems for harmonic mappings[J].Complex Variable Theory Appl,2006,51(1):81-87.
[6] HUANG Xing-zhong.Estimates on Bloch constants for planar harmonic mappings[J].J Math Anal Appl,2008,337(2):880-887.
[7] COLONNA F.The Bloch constant of bounded harmonic mappings[J].Indiana Univ Math J,1989,38:829-840.
[8] DORFF M,NOWAK M.Landau’s theorem for planar harmonic mappings[J].Comput Meth Funct Theory,2004,4:151-158.
[9] LIU Ming-sheng.Landau’s theorems for biharmonic mappings[J].Complex Variables and Elliptic Equations,2008,53(9):843-855.
[10] LIU Ming Sheng.Landau’s theorem for planar harmonic mappings[J].Computers and Mathematics with Applications,2009,57(7):1142-1146.
[11] 李东征,陈行堤.调和映照的Bloch 常数[J].华侨大学学报:自然科学版,2012,33(1):103-106.
[12] DUREN P.Harmonic mappings in the plane[M].Cambridge:Cambridge Univ Press,2004.
[13] 李忠.复分析导引[M].北京:北京大学出版社,2004.
[14] CHUAQUI M.HERNANDEZ R.Univalent harmonic mappings and linearly connected domains[J].J Math Anal Appl,2007,332(2):1189-1194.
[15] 黄心中.具有线性连结像域的局部单叶调和映照[J].数学年刊,2010,31A(5):625-630.
[16] PICK G.Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet[J].S-B Kaiserl Akad Wiss Wien Math Natur Kl Abt Ⅱa,1917,126:247-263.
相似文献/References:
[1]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(5):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[2]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(5):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[3]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
[4]石擎天,黄心中.双调和型映照的Landau定理[J].华侨大学学报(自然科学版),2014,35(1):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
SHI Qing-tian,HUANG Xin-zhong.Landau’s Theorem for Biharmonic-Type Mappings[J].Journal of Huaqiao University(Natural Science),2014,35(5):102.[doi:10.11830/ISSN.1000-5013.2014.01.0102]
[5]占龙俊,黄心中.调和映照与像域为线性连结的剪切函数的关系[J].华侨大学学报(自然科学版),2015,36(5):603.[doi:10.11830/ISSN.1000-5013.2015.05.0603]
ZHAN Long-jun,HUANG Xin-zhong.Relation Between Harmonic Mapping and Its Shear Function With Linearly Connected Image Domain[J].Journal of Huaqiao University(Natural Science),2015,36(5):603.[doi:10.11830/ISSN.1000-5013.2015.05.0603]
[6]黄心中,黄赟.某类调和函数的单叶半径和Landau定理[J].华侨大学学报(自然科学版),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
HUANG Xinzhong,HUANG Yun.On the Univalent Radius and Landau Theorem for Some Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(5):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
[7]吴东东,陈行堤.右半平面调和映照的卷积[J].华侨大学学报(自然科学版),2017,38(3):430.[doi:10.11830/ISSN.1000-5013.201703026]
WU Dongdong,CHEN Xingdi.Convolution of Harmonic Mapping in Right-Half Plane[J].Journal of Huaqiao University(Natural Science),2017,38(5):430.[doi:10.11830/ISSN.1000-5013.201703026]
[8]李鸿萍.调和映照与调和K-拟共形映照的边界Schwarz引理[J].华侨大学学报(自然科学版),2022,43(2):279.[doi:10.11830/ISSN.1000-5013.202011023]
LI Hongping.Boundary Schwarz Lemma for Harmonic Mappings and Harmonic K-Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2022,43(5):279.[doi:10.11830/ISSN.1000-5013.202011023]