[1]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581-583.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
 ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(5):581-583.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
点击复制

单位圆上调和映照的单叶半径()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第5期
页码:
581-583
栏目:
出版日期:
2012-09-20

文章信息/Info

Title:
Univalent Radius of Harmonic Mapping in the Unit Disk
文章编号:
1000-5013(2012)05-0581-03
作者:
朱剑峰 王朝祥 黄心中
华侨大学 数学科学学院, 福建 泉州 362021
Author(s):
ZHU Jian-feng WANG Chao-xiang HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和映照 单叶半径 星像函数 凸像函数
Keywords:
harmonic mapping univalent radius starlike mapping convexity mapping
分类号:
O174.2
DOI:
10.11830/ISSN.1000-5013.2012.05.0581
文献标志码:
A
摘要:
设f(z)=h(z)+g(z)^-=z+∑+∞n=2anzn+∑+∞n=1bnzn^-为定义在单位圆盘U上的调和映照,满足条件∑+∞n=2np(|an|+|bn|)≤1-|b1|,证明当0&lt
Abstract:
Let f(z)=h(z)+g(z)^-=z+∑+∞n=2anzn+∑+∞n=1bnzn^- be a harmonic mapping of the unit disk U, satisfying ∑+∞n=2np×(|an|+|bn|)≤1-|b1|.In this paper we prove that: if 0<p≤1, then f(z)is univalent in the disk |z|<r0=1/(21-p); if 1<p≤2, then f(z)is convex in the disk |z|<R0=1/(22-p). These improve the corresponding results made by M. Jahangiri and M. Öztürk.

参考文献/References:

[1] LEWY H.On the non-vanishing of the Jocobian in certain one-to-one mappings[J].Bull Am Math Soc,1936,42(10):689-692.
[2] AHUJA P.Planar harmonic univalent and related mappings[J].Journal of Inequalitities in Pure and Applied Mathematics,2005,6(4):1-18.
[3] JAHANGIRI M,SILVERMAN H.Harmonic close-to-convex mappings[J].Journal of Applied Mathematics and Stochastic Analysis,2002,15(1):23-28.
[4] JAHANGIRI M,SILVERMAN H. Meromorphic univalent harmonic functions with negative coefficients[J].Bull Korean Math Soc,1999,36(4):763-770.
[5] ÖZTÜRK M,YALCIN S.On univalent harmonic functions[J].Journal of Inequalities in Pure and Applies Mathematics,2002,3(4):1-8.
[6] WIDOMAKI J,GREGORCZYK M.Harmonic mappings in the exterior of the unit disk[J].Annales UMCS, Mathematica,2010,64(1):63-73.

相似文献/References:

[1]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(5):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[2]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(5):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[3]夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报(自然科学版),2011,32(2):218.[doi:10.11830/ISSN.1000-5013.2011.02.0218]
 XIA Xiao-qing,HUANG Xin-zhong.On the Estimates of Univalent Radius for Certain Biharmonic Mappings[J].Journal of Huaqiao University(Natural Science),2011,32(5):218.[doi:10.11830/ISSN.1000-5013.2011.02.0218]
[4]李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
 LI Dong-zheng,CHEN Xing-di.Landau Theorem for Planar Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
[5]王其文,黄心中.在微分算子作用下调和函数的单叶半径估计[J].华侨大学学报(自然科学版),2014,35(2):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
 WANG Qi-wen,HUANG Xin-zhong.On the Estimates of Univalent Radius for Harmonic Mappings under the Differential Operator[J].Journal of Huaqiao University(Natural Science),2014,35(5):227.[doi:10.11830/ISSN.1000-5013.2014.02.0227]
[6]黄赟,黄心中.某些近于凸调和函数的解析性质和系数估计[J].华侨大学学报(自然科学版),2015,36(4):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
 HUANG Yun,HUANG Xin-zhong.On the Analytic Properties and Coefficient Estimate for Close-to-Convex Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2015,36(5):478.[doi:10.11830/ISSN.1000-5013.2015.04.0478]
[7]占龙俊,黄心中.调和映照与像域为线性连结的剪切函数的关系[J].华侨大学学报(自然科学版),2015,36(5):603.[doi:10.11830/ISSN.1000-5013.2015.05.0603]
 ZHAN Long-jun,HUANG Xin-zhong.Relation Between Harmonic Mapping and Its Shear Function With Linearly Connected Image Domain[J].Journal of Huaqiao University(Natural Science),2015,36(5):603.[doi:10.11830/ISSN.1000-5013.2015.05.0603]
[8]黄心中,黄赟.某类调和函数的单叶半径和Landau定理[J].华侨大学学报(自然科学版),2016,37(1):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
 HUANG Xinzhong,HUANG Yun.On the Univalent Radius and Landau Theorem for Some Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2016,37(5):120.[doi:10.11830/ISSN.1000-5013.2016.01.0120]
[9]吴东东,陈行堤.右半平面调和映照的卷积[J].华侨大学学报(自然科学版),2017,38(3):430.[doi:10.11830/ISSN.1000-5013.201703026]
 WU Dongdong,CHEN Xingdi.Convolution of Harmonic Mapping in Right-Half Plane[J].Journal of Huaqiao University(Natural Science),2017,38(5):430.[doi:10.11830/ISSN.1000-5013.201703026]
[10]李鸿萍.调和映照与调和K-拟共形映照的边界Schwarz引理[J].华侨大学学报(自然科学版),2022,43(2):279.[doi:10.11830/ISSN.1000-5013.202011023]
 LI Hongping.Boundary Schwarz Lemma for Harmonic Mappings and Harmonic K-Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2022,43(5):279.[doi:10.11830/ISSN.1000-5013.202011023]

备注/Memo

备注/Memo:
收稿日期: 2011-10-12
通信作者: 朱剑峰(1980-),男,讲师,主要从事函数论的研究.E-mail:flandy@hqu.edu.cn.
基金项目: 国家自然科学基金资助项目(11101165); 国务院侨办科研基金资助项目(10QZR22)
更新日期/Last Update: 2012-09-20