[1]曹君艳,王全义.一类具多时滞二阶非线性微分方程的周期解[J].华侨大学学报(自然科学版),2012,33(3):348-353.[doi:10.11830/ISSN.1000-5013.2012.03.0348]
 CAO Jun-yan,WANG Quan-yi.Periodic Solutions for Second-Order Differential Equations with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2012,33(3):348-353.[doi:10.11830/ISSN.1000-5013.2012.03.0348]
点击复制

一类具多时滞二阶非线性微分方程的周期解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第3期
页码:
348-353
栏目:
出版日期:
2012-05-20

文章信息/Info

Title:
Periodic Solutions for Second-Order Differential Equations with Deviating Arguments
文章编号:
1000-5013(2012)03-0348-06
作者:
曹君艳王全义
华侨大学数学科学学院
Author(s):
CAO Jun-yan WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
泛函微分方程 重合度理论 可变时滞 周期解
Keywords:
nonlinear differential equation coincidence degree theory deviating argument periodic solution
分类号:
O175
DOI:
10.11830/ISSN.1000-5013.2012.03.0348
文献标志码:
A
摘要:
研究一类具有多变时滞的二阶非线性微分方程x″(t)+f1(x(t))x′(t)+f2(x(t-τ1(t)))(x′(t))2+g(t,x(t-τ2(t)))的周期解的存在性问题.利用重合度理论中的连续定理和一些分析技巧,得到该方程存在周期解的一些新结果,所得结果推广和改进了刘斌的结果.
Abstract:
In this paper,we study the problem on the existence of periodic solutions for a class of nonlinear second-order differential equations with deviating arguments x″(t)+f1(x(t))x′(t)+f2(x(t-τ1(t)))(x′(t))2+g(t,x(t-τ2(t))).By means of the continuation theorem of coincidence degree theory and some analysis techniques,we obtain some news results on the existence of periodic solutions for the equations.Our results generalize and improve the one made by Liu Bin.

参考文献/References:

[1] GUIDORIZZI H L. Oscillating and periodic solutions of equations of the type x″+f1 (x)x′+f2 (x)(x’)2 +g(x)=0 [J]. Journal of Mathematical Analysis and Applications, 1993(1):11-23.doi:10.1006/jmaa.1993.1197.
[2] POURNAKI M R, RAZANI A. On the existence of periodic solutions for a class of generalize forced Liénard equations [J]. Applied Mathematics Letters, 2007(3):248-254.doi:10.1016/j.aml.2006.06.004.
[3] 佘志炜, 王全义. 一类具有偏差变元的二阶泛函微分方程周期解 [J]. 华侨大学学报(自然科学版), 2009(6):709-714.
[4] LU Shi-ping, GE Wei-gao. Periodic solutions for a kind of second-order differential equations with multiple deviating arguments [J]. Applied Mathematics and Computation, 2003, (1):195-209.doi:10.1016/S0096-3003(02)00536-2.
[5] LIU Bing. Periodic solutions of a nonlinear second-order differential equation with deviating argument [J]. Journal of Mathematical Analysis and Applications, 2005(1):313-321.doi:10.1016/j.jmaa.2005.01.045.
[6] LU Shi-ping, GE Wei-gao, ZHENG Zu-xiou. Periodic solutions to neutral differential equation with deviating arguments [J]. Applied Mathematics and Computation, 2004(1):17-27.
[7] LU Shi-ping, GE Wei-gao. Periodic solutions for a kind of Liénard equation with a deviating argument [J]. Journal of Mathematical Analysis and Applications, 2004(1):231-243.doi:10.1016/j.jmaa.2003.09.047.
[8] LIU Bin-wen, HUANG Li-hong. Periodic solutions for a kind of Rayleigh equation with a deviating argument [J]. Journal of Mathematical Analysis and Applications, 2006(2):491-500.
[9] GAME R E, MAWHIN J L. Coincidence degree and nonlinear differential equations [M]. Beilin:Springer-Verlag, 1977.

相似文献/References:

[1]王全义.具状态依赖时滞的泛函微分方程周期解[J].华侨大学学报(自然科学版),2007,28(2):212.[doi:10.3969/j.issn.1000-5013.2007.02.026]
 WANG Quan-yi.Periodic Solutions for Functional Differential Equations with State-Dependent Delay[J].Journal of Huaqiao University(Natural Science),2007,28(3):212.[doi:10.3969/j.issn.1000-5013.2007.02.026]
[2]佘志炜,王全义.一类具有偏差变元的二阶泛函微分方程周期解[J].华侨大学学报(自然科学版),2009,30(6):709.[doi:10.11830/ISSN.1000-5013.2009.06.0709]
 SHE Zhi-wei,WANG Quan-yi.Periodic Solutions for a Class of Second Order Functional Differential Equations with a Deviating Argument[J].Journal of Huaqiao University(Natural Science),2009,30(3):709.[doi:10.11830/ISSN.1000-5013.2009.06.0709]
[3]汪东树,王全义.脉冲时滞Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2010,31(5):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(3):590.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
[4]刘燕,王全义.具有脉冲和时滞合作系统的正周期解存在性[J].华侨大学学报(自然科学版),2010,31(6):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
 LIU Yan,WANG Quan-yi.Existence of Positive Periodic Solutions for a Class of Mutualism Systems with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(3):697.[doi:10.11830/ISSN.1000-5013.2010.06.0697]
[5]汪东树,王全义.一类具多时滞和脉冲Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Several Delays[J].Journal of Huaqiao University(Natural Science),2011,32(3):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
[6]陈应生,汪东树.脉冲时滞Lotka-Volterra食物链系统的正周期解[J].华侨大学学报(自然科学版),2012,33(2):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
 CHEN Ying-sheng,WANG Dong-shu.Positive Periodic Solutions of a Lotka-Volterra Food-Chain System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2012,33(3):218.[doi:10.11830/ISSN.1000-5013.2012.02.0218]
[7]汪东树,王全义.具时滞和脉冲的植化相克系统周期正解[J].华侨大学学报(自然科学版),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy[J].Journal of Huaqiao University(Natural Science),2012,33(3):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
[8]佘志炜,王全义.一类一阶泛函微分方程非平凡周期解的存在性[J].华侨大学学报(自然科学版),2013,34(4):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]
 SHE Zhi-wei,WANG Quan-yi.Existence of Nontrivial Periodic Solutions for a Class of First Order Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(3):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(09QZR10)
更新日期/Last Update: 2014-03-23