参考文献/References:
[1] LEWY H. On the non-vanishing of the Jacobian in certain one-to-one mappings [J]. Bulletin of the American Mathematical Society, 1936, (10):689-692.
[2] DUREN P. Harmonic mappings in the plane [M]. New York:cambridge University Press, 2004.
[3] PAVLOVtC M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2002.365-372.
[4] KALAJ D, PAVLOVIC M. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a halfplane [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005.159-165.
[5] CHEN Huai-hui, GAUTHIER P M, HENGARTNER W. Bloch constants for planar harmonic mappings [J]. Proceedings of the American Mathematical Society, 2000, (11):3231-3240.doi:10.1090/S0002-9939-00-05590-8.
[6] 黄心中. 单位圆盘上的调和拟共形同胚 [J]. 数学年刊A辑, 2008(4):519-524.doi:10.3321/j.issn:1000-8134.2008.04.010.
[7] HENGARTNER W, SCHOBER G. Harmonic mappings with given dilatation [J]. Journal of the London Mathematical Society, 1986(2):473-483.
[8] CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 1984.3-25.
[9] 林兴端. 调和单叶映射反函数调和的充要条件 [J]. 纯粹数学与应用数学, 1995(2):105-109.
[10] ZHANG Zhao-gong, LIU Li-quan. The inverse functions of univalent harmonic mappings [J]. Advances in Mathematics, 1996(3):270-276.
[11] 胡春英, 黄心中. 单叶调和函数及其反函数为调和拟共形的充要条件 [J]. 华侨大学学报(自然科学版), 2010(5):586-589.
相似文献/References:
[1]张秋凝.线性网络状态空间轨道的计算机分析[J].华侨大学学报(自然科学版),1981,2(1):105.[doi:10.11830/ISSN.1000-5013.1981.01.0105]
[2]曾文平.解两类特殊三对角线性方程组的修正追赶法[J].华侨大学学报(自然科学版),1984,5(2):20.[doi:10.11830/ISSN.1000-5013.1984.02.0020]
[3]曾景春.十八世纪的数学物理[J].华侨大学学报(自然科学版),1984,5(2):44.[doi:10.11830/ISSN.1000-5013.1984.02.0044]
[4]王子丁.离散方程组的解不出负的条件[J].华侨大学学报(自然科学版),1993,14(1):8.[doi:10.11830/ISSN.1000-5013.1993.01.0008]
Wang Ziding.The Nonnegativity Condition of the Solution of Discrete Equations[J].Journal of Huaqiao University(Natural Science),1993,14(1):8.[doi:10.11830/ISSN.1000-5013.1993.01.0008]
[5]韩飞,王全义.具状态依赖时滞微分方程的周期正解[J].华侨大学学报(自然科学版),2005,26(4):357.[doi:10.3969/j.issn.1000-5013.2005.04.007]
Han Fei,Wang Quanyi.Existence of Positive Pesitive Periodic Solutions to a Class of Differential Equations with State-Dependent Delay[J].Journal of Huaqiao University(Natural Science),2005,26(1):357.[doi:10.3969/j.issn.1000-5013.2005.04.007]
[6]韩雪,黄心中.两类单叶调和函数的偏差估计[J].华侨大学学报(自然科学版),2008,29(4):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
HAN Xue,HUANG Xin-zhong.Estimate on the Distortion for Two Classes of Harmonic Univalent Functions[J].Journal of Huaqiao University(Natural Science),2008,29(1):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
[7]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(1):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[8]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(1):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[9]胡春英,黄心中.某些单叶调和函数的稳定性[J].华侨大学学报(自然科学版),2011,32(4):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
HU Chun-ying,HUANG Xin-zhong.Stability of Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(1):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
[10]邹黄辉,王全义.一类四阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2011,32(6):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
ZOU Huang-hui,WANG Quan-yi.Existence of Positive Solutions for a Class of Fourth-Order Differential Equations with Integral Boundary Value Problem[J].Journal of Huaqiao University(Natural Science),2011,32(1):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]