[1]胡春英,黄心中.非平凡双向单叶调和映照的微分方程[J].华侨大学学报(自然科学版),2012,33(1):107-111.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
 HU Chun-ying,HUANG Xin-zhong.On Differential Equations for Non-Trivial Bilateral Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(1):107-111.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
点击复制

非平凡双向单叶调和映照的微分方程()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第1期
页码:
107-111
栏目:
出版日期:
2012-01-20

文章信息/Info

Title:
On Differential Equations for Non-Trivial Bilateral Univalent Harmonic Mappings
文章编号:
1000-5013(2012)01-0107-05
作者:
胡春英黄心中
华侨大学数学科学学院
Author(s):
HU Chun-ying HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
单叶调和函数 微分方程 双向单叶调和函数 系数估计 面积偏差
Keywords:
univalent harmonic mappings differential equation bilateral univalent harmonic mappings coefficient estimate area distortion
分类号:
O174.51
DOI:
10.11830/ISSN.1000-5013.2012.01.0107
文献标志码:
A
摘要:
给出定义在单连通区域上的保向单叶调和映照f=h+g珚是非平凡双向单叶调和映照的充要条件,即f(z)为非平凡双向单叶调和映照的充要条件是g′(z)≠0,z∈D,且满足h(z),g(z)的两个微分方程.此外,应用相关结果得到单位圆上的非平凡双向单叶调和映照的系数和面积偏差.
Abstract:
In this paper,we obtained a necessary and sufficient conditions that a sense preserving and univalent harmonic mapping in a simply connected domain is a non-trivial bilateral univalent harmonic mapping.We also obtain some estimates of coefficients and area distortion bound for non-trivial bilateral univalent harmonic mappings in a unit disk.

参考文献/References:

[1] LEWY H. On the non-vanishing of the Jacobian in certain one-to-one mappings [J]. Bulletin of the American Mathematical Society, 1936, (10):689-692.
[2] DUREN P. Harmonic mappings in the plane [M]. New York:cambridge University Press, 2004.
[3] PAVLOVtC M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2002.365-372.
[4] KALAJ D, PAVLOVIC M. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a halfplane [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005.159-165.
[5] CHEN Huai-hui, GAUTHIER P M, HENGARTNER W. Bloch constants for planar harmonic mappings [J]. Proceedings of the American Mathematical Society, 2000, (11):3231-3240.doi:10.1090/S0002-9939-00-05590-8.
[6] 黄心中. 单位圆盘上的调和拟共形同胚 [J]. 数学年刊A辑, 2008(4):519-524.doi:10.3321/j.issn:1000-8134.2008.04.010.
[7] HENGARTNER W, SCHOBER G. Harmonic mappings with given dilatation [J]. Journal of the London Mathematical Society, 1986(2):473-483.
[8] CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 1984.3-25.
[9] 林兴端. 调和单叶映射反函数调和的充要条件 [J]. 纯粹数学与应用数学, 1995(2):105-109.
[10] ZHANG Zhao-gong, LIU Li-quan. The inverse functions of univalent harmonic mappings [J]. Advances in Mathematics, 1996(3):270-276.
[11] 胡春英, 黄心中. 单叶调和函数及其反函数为调和拟共形的充要条件 [J]. 华侨大学学报(自然科学版), 2010(5):586-589.

相似文献/References:

[1]张秋凝.线性网络状态空间轨道的计算机分析[J].华侨大学学报(自然科学版),1981,2(1):105.[doi:10.11830/ISSN.1000-5013.1981.01.0105]
[2]曾文平.解两类特殊三对角线性方程组的修正追赶法[J].华侨大学学报(自然科学版),1984,5(2):20.[doi:10.11830/ISSN.1000-5013.1984.02.0020]
[3]曾景春.十八世纪的数学物理[J].华侨大学学报(自然科学版),1984,5(2):44.[doi:10.11830/ISSN.1000-5013.1984.02.0044]
[4]王子丁.离散方程组的解不出负的条件[J].华侨大学学报(自然科学版),1993,14(1):8.[doi:10.11830/ISSN.1000-5013.1993.01.0008]
 Wang Ziding.The Nonnegativity Condition of the Solution of Discrete Equations[J].Journal of Huaqiao University(Natural Science),1993,14(1):8.[doi:10.11830/ISSN.1000-5013.1993.01.0008]
[5]韩飞,王全义.具状态依赖时滞微分方程的周期正解[J].华侨大学学报(自然科学版),2005,26(4):357.[doi:10.3969/j.issn.1000-5013.2005.04.007]
 Han Fei,Wang Quanyi.Existence of Positive Pesitive Periodic Solutions to a Class of Differential Equations with State-Dependent Delay[J].Journal of Huaqiao University(Natural Science),2005,26(1):357.[doi:10.3969/j.issn.1000-5013.2005.04.007]
[6]韩雪,黄心中.两类单叶调和函数的偏差估计[J].华侨大学学报(自然科学版),2008,29(4):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
 HAN Xue,HUANG Xin-zhong.Estimate on the Distortion for Two Classes of Harmonic Univalent Functions[J].Journal of Huaqiao University(Natural Science),2008,29(1):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
[7]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(1):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[8]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(1):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[9]胡春英,黄心中.某些单叶调和函数的稳定性[J].华侨大学学报(自然科学版),2011,32(4):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
 HU Chun-ying,HUANG Xin-zhong.Stability of Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(1):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
[10]邹黄辉,王全义.一类四阶微分方程积分边值问题正解的存在性[J].华侨大学学报(自然科学版),2011,32(6):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]
 ZOU Huang-hui,WANG Quan-yi.Existence of Positive Solutions for a Class of Fourth-Order Differential Equations with Integral Boundary Value Problem[J].Journal of Huaqiao University(Natural Science),2011,32(1):699.[doi:10.11830/ISSN.1000-5013.2011.06.0699]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(2008J0195); 华侨大学科研基金资助项目(11HZR17)
更新日期/Last Update: 2014-03-23