[1]李东征,陈行堤.调和映照的Bloch常数[J].华侨大学学报(自然科学版),2012,33(1):103-106.[doi:10.11830/ISSN.1000-5013.2012.01.0103]
 LI Dong-zheng,CHEN Xing-di.Bloch Constant of Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(1):103-106.[doi:10.11830/ISSN.1000-5013.2012.01.0103]
点击复制

调和映照的Bloch常数()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第33卷
期数:
2012年第1期
页码:
103-106
栏目:
出版日期:
2012-01-20

文章信息/Info

Title:
Bloch Constant of Harmonic Mappings
文章编号:
1000-5013(2012)01-0103-04
作者:
李东征陈行堤
华侨大学数学科学学院
Author(s):
LI Dong-zheng CHEN Xing-di
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
拟正则调和映照 开调和映照 Bloch常数 Schwarz引理
Keywords:
quasiregular harmonic mapping open harmonic mapping Bloch constant Schwarz lemma
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.2012.01.0103
文献标志码:
A
摘要:
由精确化的Schwarz引理,研究开调和映照类和K-拟正则调和映照类的Bloch常数,改进陈怀惠和P.M.Gauthier的相应结果.分别得到开调和映照类用全纯函数的Bloch常数表示的渐进精确的偏差估计,以及K-拟正则调和映照类的用系数|b1|表示的偏差估计.
Abstract:
By the refined Schwarz lemma,we study the Bloch constants for open harmonic mappings and K-quasiregular harmonic mappings and improve the corresponding results obtained by Chen Huai-hui and P.M.Gauthier.We also get an asymptotically sharp estimate for open harmonic mappings expressed by the Bloch constant of holomorphic functions and give an estimate represented by the coefficient |b1| for K-quasiregular harmonic mappings.

参考文献/References:

[1] BLOCH A. Les théorèms de M:Valiron sur les fonctions entières et la théorie de l’uniformisation [J]. Annales De La Faculté Des Sciences De Toulouse:Sér 3, 1926.1-12.
[2] AHLFORS L V. An extension of Schwarz’s lemma [J]. Transactions of the American Mathematical Society, 1938.359-364.
[3] BONK M. On Bloch’s constant [J]. Proceedings of the American Mathematical Society, 1990.889-894.
[4] CHEN Huai-hui, GAUTHIER P M. On Bloch’s constant [J]. Journal d’Analyse Mathematique, 1996(2):275-291.
[5] LIU Ming-sheng. Estimates on Bloch constants for planar harmonic mappings [J]. Science in China (Series A):Mathematics, 2008(1):87-93.
[6] CHEN Huai-hui, GAUTHIER P M. Bloch constants in several variables [J]. Transactions of the American Mathematical Society, 2001(4):1371-1386.doi:10.1090/S0002-9947-00-02734-3.
[7] 夏小青, 黄心中. 平面有界调和函数的Bloch常数估计 [J]. 数学年刊a辑, 2010(6):769-776.
[8] HUANG Xin-zhong. Estimates on Bloch constants for planar harmonic mappings [J]. Journal of Mathematical Analysis and Applications, 2007(2):880-887.
[9] GRIGORYAN A. Landau and Bloch theorems for harmonic mappings [J]. Complex Variables Theory and Application, 2006(1):81-87.
[10] CHEN Huai-hui, GAUTHIER P M, HENGARTNER W. Bloch constants for planar harmonic mappings [J]. Proceedings of the American Mathematical Society, 2000, (11):3231-3240.doi:10.1090/S0002-9939-00-05590-8.
[11] COLONNA F. The Bloch constant of bounded harmonic mappings [J]. Indiana University Mathematics Journal, 1989(4):829-840.doi:10.1512/iumj.1989.38.38039.
[12] CHEN Huai-hui, GAUTHIER P M. The landau theorem and bloch theorem for planar harmonic and Pluriharmonic mappings [J]. Proceedings of the American Mathematical Society, 2011.583-595.
[13] GARNETT J B. Bounded analytic functions:Graduate texts in mathematics [M]. Beilin:Springer-Verlag, 2006.

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(S0650019); 华侨大学基本科研专项基金资助项目(JB-ZR1136)
更新日期/Last Update: 2014-03-23