[1]姚村,林峰.二阶矩随机Hilbert边值问题[J].华侨大学学报(自然科学版),2011,32(6):714-717.[doi:10.11830/ISSN.1000-5013.2011.06.0714]
 YAO Cun,LIN Feng.Random Hilbert Boundary Value Problem with Second Order Moment[J].Journal of Huaqiao University(Natural Science),2011,32(6):714-717.[doi:10.11830/ISSN.1000-5013.2011.06.0714]
点击复制

二阶矩随机Hilbert边值问题()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第6期
页码:
714-717
栏目:
出版日期:
2011-11-20

文章信息/Info

Title:
Random Hilbert Boundary Value Problem with Second Order Moment
文章编号:
1000-5013(2011)06-0714-04
作者:
姚村林峰
华侨大学数学科学学院
Author(s):
YAO Cun LIN Feng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
边值问题 Hilbert问题 Riemann问题 二阶矩 对称扩张 随机过程
Keywords:
boundary value problem Hilbert problem Riemann problem second order moment symetrical expansion random process
分类号:
O175.8
DOI:
10.11830/ISSN.1000-5013.2011.06.0714
文献标志码:
A
摘要:
通过对称扩张的方法,把二阶矩随机Hilbert边值问题转化为二阶矩随机Riemann边值问题,最终求解二阶矩随机Hilbert边值问题.
Abstract:
In order to solve the random Hilbert boundary value problem of random process with second order moment,we convert it into randon Riemann boundary value problem by the method of symetrical expansion,and get its solution.

参考文献/References:

[1] WANG Chuan-rong. Random singular integral of random process with second order moment [J]. Acta Mathematica Scientia, 2005(2):376-384.
[2] WANG Chuan-rong. Random singular integral and its application [M]. New Jersey:World Scientific Publishing Company, 2000.191-197.
[3] 林峰. Beurling-Ahlfors扩张的伸张函数的边界极限 [J]. 华侨大学学报(自然科学版), 2004(4):352-355.doi:10.3969/j.issn.1000-5013.2004.04.004.
[4] 武宝亭, 李庆生, 杨跃武. 随机过程与随机微分方程 [M]. 北京:电子工业出版社, 1994.
[5] 路见可. 解析函数边值问题 [M]. 武汉:武汉大学出版社, 2004.

相似文献/References:

[1]吴丽娇,王全义.具有脉冲的一阶非线性微分方程边值问题的正解[J].华侨大学学报(自然科学版),2012,33(3):342.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
 WU Li-jiao,WANG Quan-yi.Positive Solutions of Boundary Value Problems for Nonlinear First Order Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2012,33(6):342.[doi:10.11830/ISSN.1000-5013.2012.03.0342]
[2]吴丽娇,王全义.具有脉冲的非线性微分方程边值问题的多个正解[J].华侨大学学报(自然科学版),2015,36(预先出版):0.
 WU Li-jiao,WANG Quan-yi.Multiple Positive Solutions of Boundary Value Problems for Nonlinear Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2015,36(6):0.
[3]吴丽娇,王全义.具有脉冲的非线性微分方程边值问题的多个正解[J].华侨大学学报(自然科学版),2014,35(4):466.[doi:10.11830/ISSN.1000-5013.2014.04.0466]
 WU Li-jiao,WANG Quan-yi.Multiple Positive Solutions of Boundary Value Problems for Nonlinear Impulsive Differential Equations[J].Journal of Huaqiao University(Natural Science),2014,35(6):466.[doi:10.11830/ISSN.1000-5013.2014.04.0466]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(2007J0183)
更新日期/Last Update: 2014-03-23