[1]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705-709.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(6):705-709.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
点击复制

两类调和函数的拟共形性质()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第6期
页码:
705-709
栏目:
出版日期:
2011-11-20

文章信息/Info

Title:
Quasi-Conformality for Two Classes of Harmonic Functions
文章编号:
1000-5013(2011)06-0705-05
作者:
朱剑峰黄心中
华侨大学数学科学学院
Author(s):
ZHU Jian-feng HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和函数 拟共形映照 HS(μ)函数类 ΣH(γ)函数类
Keywords:
harmonic mapping quasi-conformal mapping HS(μ) function ΣH(γ) function
分类号:
O174.5
DOI:
10.11830/ISSN.1000-5013.2011.06.0705
文献标志码:
A
摘要:
设HS(μ)和ΣH(γ)分别为定义在单位圆盘U={|z|<1}及区域U珦={|z|>1}上的两类调和函数.利用HS(μ)的偏差估计,证明HS(μ)为一族双向-Lipschitz函数类及调和拟共形函数类.进而,找到ΣH(γ)类的函数为调和拟共形映照的一个充分条件.
Abstract:
Let HS(μ) and ΣH(γ) be two classes of harmonic functions,each are defined in the unit disk U={|z|<1} and the domain ={|z|>1}.In this paper,by using distortion estimate for HS(μ),we prove HS(μ) is a class of bi-Lipschitz function and harmonic quasiconformal mapping.Moreover,we also find a sufficient condition about the function for ΣH(γ) to be a harmonic quasiconformal mapping.

相似文献/References:

[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
 Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(6):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
 Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(6):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
 Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(6):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
 LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(6):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[6]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(6):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[7]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(6):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[8]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(6):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[9]潘旭玲,黄心中.一类新的Salagean-Type单叶调和映照的特征[J].华侨大学学报(自然科学版),2013,34(4):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
 PAN Xu-ling,HUANG Xin-zhong.On the Property of a New Class of Salagean-Type Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2013,34(6):466.[doi:10.11830/ISSN.1000-5013.2013.04.0466]
[10]潘旭玲,黄心中.一类单位圆盘上单叶调和映照的延拓定理[J].华侨大学学报(自然科学版),2013,34(6):701.[doi:10.11830/ISSN.1000-5013.2013.06.0701]
 PAN Xu-ling,HUANG Xin-zhong.Extension Theorems for Some Univalent Harmonic Mappings on the Unit Disk[J].Journal of Huaqiao University(Natural Science),2013,34(6):701.[doi:10.11830/ISSN.1000-5013.2013.06.0701]
[11]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
 WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(6):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(10QZR22)
更新日期/Last Update: 2014-03-23