[1]王志焕,黄浪扬.组合KdV-mKdV方程的多辛Fourier拟谱格式[J].华侨大学学报(自然科学版),2011,32(4):471-474.[doi:10.11830/ISSN.1000-5013.2011.04.0471]
 WANG Zhi-huan,HUANG Lang-yang.Multi-Symplectic Fourier Pseudo-Spectral Scheme for the Combined KdV-mKdV Equation[J].Journal of Huaqiao University(Natural Science),2011,32(4):471-474.[doi:10.11830/ISSN.1000-5013.2011.04.0471]
点击复制

组合KdV-mKdV方程的多辛Fourier拟谱格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第4期
页码:
471-474
栏目:
出版日期:
2011-07-20

文章信息/Info

Title:
Multi-Symplectic Fourier Pseudo-Spectral Scheme for the Combined KdV-mKdV Equation
文章编号:
1000-5013(2011)04-0471-04
作者:
王志焕黄浪扬
华侨大学数学科学学院
Author(s):
WANG Zhi-huan HUANG Lang-yang
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
组合KdV-mKdV方程 多辛方程组 Fourier拟谱格式 数值模拟
Keywords:
combined KdV-mKdV equation multi-symplectic systems fourier pseudo-spectral scheme numerical simulating
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.2011.04.0471
文献标志码:
A
摘要:
基于Hamilton空间体系下的多辛理论,提出组合KdV-mKdV方程的一个多辛方程组.通过离散此方程组,得到原方程的一个多辛Fourier拟谱格式,以及格式的全离散多辛守恒律.由数值结果可知,多辛Fourier拟谱格式能很好地模拟孤立波运动的波形,不出现振荡现象,且在空间方向具有较高的精度和收敛阶.
Abstract:
Based on the multi-symplectic theory in Hamilton space,a multi-symplectic systems for the combined KdV-mKdV equation is proposed.By discreting the systems,a multi-symplectic Fourier pseudo-spectral scheme is obtained.We also obtain the full-discrete multi-symplectic conservation laws for the scheme.Numerical experiments show that the multi-symplectic Fourier pseudo-spectral scheme can well simulate the motion of the soliton,and does not appear oscillation phenomena with high accuracy and convergence order in space direction.

参考文献/References:

[1] TAPPERTFD. Asymptotic theory of self trapping of heat pulses in solids [J]. Physical Review Letters, 1970, (16):1108-1111.
[2] ASCHERUM, MCLACHLAN R I. Onsymplectic and multisymplectic schemes for the KdVequation [J]. Journal of Scientific Computing, 2005, (1/2):83-104.
[3] 胡伟鹏, 邓子辰, 李文成. KdV方程的多辛算法及其孤子解的数值模拟 [J]. 西北工业大学学报, 2008(1):128-131.doi:10.3969/j.issn.1000-2758.2008.01.025.
[4] WANG Hui-ping, WANGYu-shun, HU Ying-yng. Anexplicit schemef or the KdVequation [J]. Chinese Physics Letters, 2008(7):2335-2338.
[5] 郭峰, 吴凤珍. MKdV方程的多辛格式 [J]. 河南师范大学学报(自然科学版), 2005(1):128-130.doi:10.3969/j.issn.1000-2367.2005.01.033.
[6] BRIDGES T J, REICH S. Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations [J]. Physical Review D, 2001():491-504.doi:10.1016/S0167-2789(01)00188-9.
[7] CHEN Jing-bo. Symplectic and mylti-symplectic Fourier pseudospctral methods for the Klein-Gordon equation [J]. Letters in Mathematical Physics, 2006(3):293-305.doi:10.1007/s11005-005-0045-3.
[8] 黄浪扬. 广义Pochhammer-Chree方程的多辛Fourier拟谱格式及孤立波试验 [J]. 华侨大学学报(自然科学版), 2008(3):468-471.

相似文献/References:

[1]黄浪扬.广义Pochhammer-Chree方程的多辛Fourier拟谱格式及孤立波试验[J].华侨大学学报(自然科学版),2008,29(3):468.[doi:10.11830/ISSN.1000-5013.2008.03.0468]
 HUANG Lang-yang.Multi-Symplectic Fourier Pseudo-Spectral Scheme for Generalized Pochhammer-Chree Equation and Solitary Wave Experiments[J].Journal of Huaqiao University(Natural Science),2008,29(4):468.[doi:10.11830/ISSN.1000-5013.2008.03.0468]
[2]黄浪扬.非线性“Good”Boussinesq方程的显式多辛格式[J].华侨大学学报(自然科学版),2011,32(1):100.[doi:10.11830/ISSN.1000-5013.2011.01.0100]
 HUANG Lang-yang.Explicit Multi-Symplectic Scheme for Nonlinear "Good" Boussinesq Equation[J].Journal of Huaqiao University(Natural Science),2011,32(4):100.[doi:10.11830/ISSN.1000-5013.2011.01.0100]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(10901074)
更新日期/Last Update: 2014-03-23