[1]胡春英,黄心中.某些单叶调和函数的稳定性[J].华侨大学学报(自然科学版),2011,32(4):453-457.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
 HU Chun-ying,HUANG Xin-zhong.Stability of Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(4):453-457.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
点击复制

某些单叶调和函数的稳定性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第4期
页码:
453-457
栏目:
出版日期:
2011-07-20

文章信息/Info

Title:
Stability of Some Univalent Harmonic Functions
文章编号:
1000-5013(2011)04-0453-05
作者:
胡春英黄心中
华侨大学数学科学学院
Author(s):
HU Chun-ying HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
单叶调和函数 双向单叶 调和映照 线性连接 稳定性
Keywords:
univalent harmonic functions bilateral univalent harmonic mappings linearly connected stability
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.2011.04.0453
文献标志码:
A
摘要:
对于定义在区域D上的单叶调和映照f(z)=h(z)+g(z),研究调和函数F(z)=h(z)+λg(z)仍单叶的稳定性问题,以及常数λ的满足条件.此外,推广并得到一些单叶调和函数子类的稳定性结论.
Abstract:
For univalent harmonic function f(z)=h(z)+g(z) defined in a domain D,we investigate the problem of the stability that the harmonic function F(z)=h(z)+λg(z) is also univalent and which condition the constant λ satisfies,and we also obtain some results for the stability of some subclasses of univalent harmonic functions.

参考文献/References:

[1] LEWYH. On thenon-vanishing oftheJacobianin certain one-to-onemappings [J]. Bulletin of the American Mathematical Society, 1936.689-692.doi:10.1090/S0002-9904-1936-06397-4.
[2] CHUAQUIM, HERNANDEZR. Univalent harmonic mappings and linearly connecteddomains [J]. Journal of Mathematical Analysis and Applications, 2007(2):1189-1194.doi:10.1016/j.jmaa.2006.10.086.
[3] 吴瑞溢, 黄心中. 单叶调和函数的稳定性 [J]. 漳州师范学院学报(自然科学版), 2007(2):11-15.doi:10.3969/j.issn.1008-7826.2007.02.003.
[4] 林珍连. 某些调和单叶函数的稳定性及系数估计 [J]. 华侨大学学报(自然科学版), 2009(6):718-719.
[5] JAHANGIRI J M. Coefficient bounds and univalence criteria for harmonic functions with negative coefficients [J]. Ann Univ Mariae Cruie-Sklodowska Sect, 1998(2):57-66.
[6] (O)ZT(U)RK M, YALCIN S, YAMANKARADENIZ M. Convex subclass of harmonic starlike functions [J]. Applied Mathematics and Computation, 2004.449-459.
[7] ZHANG Zhao-gong, LIU Li-quan. The inverse functions of univalent harmonic mappings [J]. Advances in Mathematics, 1996(3):270-276.

相似文献/References:

[1]韩雪,黄心中.两类单叶调和函数的偏差估计[J].华侨大学学报(自然科学版),2008,29(4):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
 HAN Xue,HUANG Xin-zhong.Estimate on the Distortion for Two Classes of Harmonic Univalent Functions[J].Journal of Huaqiao University(Natural Science),2008,29(4):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
[2]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(4):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[3]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(4):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[4]胡春英,黄心中.非平凡双向单叶调和映照的微分方程[J].华侨大学学报(自然科学版),2012,33(1):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
 HU Chun-ying,HUANG Xin-zhong.On Differential Equations for Non-Trivial Bilateral Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(4):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
[5]傅冬绵,黄心中.一类单叶调和函数的拟共形性质[J].华侨大学学报(自然科学版),2019,40(6):812.[doi:10.11830/ISSN.1000-5013.201903003]
 FU Dongmian,HUANG Xinzhong.On Quasiconformal Properties for One Set of Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2019,40(4):812.[doi:10.11830/ISSN.1000-5013.201903003]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(2008J0195); 华侨大学科研基金资助项目(09HZR23)
更新日期/Last Update: 2014-03-23