参考文献/References:
[1] NEHARI Z. The Schwarzian derivative and schlicht functions [J]. Bulletin of the American Mathematical Society, 1949(6):545-551.doi:10.1090/S0002-9904-1949-09241-8.
[2] AHLFORS L, WEILL G. A uniqueness theorem for Beltrami equations [J]. Proceedings of the American Mathematical Society, 1962.975-978.doi:10.1090/S0002-9939-1962-0148896-1.
[3] NEHARI Z. Univalence criteria depending on the Schwarzian derivative [J]. Illinois Journal of Mathematics, 1979(3):345-351.
[4] GEHRING F W, POMMERENKE C. On the Nehari univalence criterion and quasicircles [J]. Commentarii Mathematici Helvetici, 1984(1):226-242.doi:10.1007/BF02566347.
[5] CHUAQUI M, OSGOOD B. Finding complete conformal metrics to extend conformal mappings [J]. Indiana University Mathematics Journal, 1998(4):1273-1291.doi:10.1512/iumj.1998.47.1606.
[6] CHUAQUI M, OSGOOD B. Sharp distortion theorems asociated with the Schwarzian derivative [J]. Journal of the London Mathematical Society, 1993(2):289-298.doi:10.1112/jlms/s2-48.2.289.
[7] CHUAQUI M, POMMERENKE C. Characteristic properties of Nehari functions [J]. Pacific Journal of Mathematics, 1999(1):83-94.doi:10.2140/pjm.1999.188.83.
[8] CHUAQUI M, OSGOOD B. General univalence criteria in the disk:Extensions and extremal function [J]. Annales Academiae Scientiarum Fennicae, 1998(1):101-132.
[9] CHUAQUI M, OSGOOD B. Ahlfors-Weill extensions of conformal mappings and critical points of the Poincaré metric [J]. Commentarii Mathematici Helvetici, 1994(1):659-668.doi:10.1007/BF02564508.
[10] LEHTO O. Univalent functions and Teichmüller space [M]. New York:springer-verlag, 1987.
[11] 杨宗信, 陈纪修. Nehari函数族的偏差定理与拟共形延拓 [J]. 数学年刊A辑, 2004(6):695-704.doi:10.3321/j.issn:1000-8134.2004.06.002.
[12] 杨宗信. 一类Nehari函数的偏差性质 [J]. 数学年刊A辑, 2007(6):781-790.doi:10.3321/j.issn:1000-8134.2007.06.005.
相似文献/References:
[1]陈行堤.一类拟圆盘的一些几何特征[J].华侨大学学报(自然科学版),2003,24(4):354.[doi:10.3969/j.issn.1000-5013.2003.04.004]
Chen Xingdi.Some Geometric Features of a Class of Quasidisk[J].Journal of Huaqiao University(Natural Science),2003,24(3):354.[doi:10.3969/j.issn.1000-5013.2003.04.004]
[2]邓勇,张金顺.高阶Levi方程的Painlevé测试和精确解[J].华侨大学学报(自然科学版),2009,30(4):476.[doi:10.11830/ISSN.1000-5013.2009.04.0476]
DENG Yong,ZHANG Jin-shun.The Painlevé Test for Higher Order Levi Equation and Its Solution[J].Journal of Huaqiao University(Natural Science),2009,30(3):476.[doi:10.11830/ISSN.1000-5013.2009.04.0476]
[3]陈南,张金顺.广义Lorenz系统的Painlevé分析及其精确解[J].华侨大学学报(自然科学版),2012,33(1):94.[doi:10.11830/ISSN.1000-5013.2012.01.0094]
CHEN Nan,ZHANG Jin-shun.Painlevé Analysis and Explicit Solutions for a Generalized Lorenz System[J].Journal of Huaqiao University(Natural Science),2012,33(3):94.[doi:10.11830/ISSN.1000-5013.2012.01.0094]