[1]夏小青,黄心中.一类双调和映照的单叶半径估计[J].华侨大学学报(自然科学版),2011,32(2):218-221.[doi:10.11830/ISSN.1000-5013.2011.02.0218]
 XIA Xiao-qing,HUANG Xin-zhong.On the Estimates of Univalent Radius for Certain Biharmonic Mappings[J].Journal of Huaqiao University(Natural Science),2011,32(2):218-221.[doi:10.11830/ISSN.1000-5013.2011.02.0218]
点击复制

一类双调和映照的单叶半径估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第32卷
期数:
2011年第2期
页码:
218-221
栏目:
出版日期:
2011-03-20

文章信息/Info

Title:
On the Estimates of Univalent Radius for Certain Biharmonic Mappings
文章编号:
1000-5013(2011)02-0218-04
作者:
夏小青黄心中
华侨大学数学科学学院
Author(s):
XIA Xiao-qing HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Landau定理 双调和映照 线性复算子 单叶半径
Keywords:
landau theorem biharmonic mapping linear complex operator univalent radius
分类号:
O174.3
DOI:
10.11830/ISSN.1000-5013.2011.02.0218
文献标志码:
A
摘要:
若F为单位圆D={z||z|<1}上的双调和映照,L=zz--zz-,即L是一个线性复算子.利用单位圆上有界调和函数的系数估计不等式,对双调和映照L(F)的单叶半径进行估计,所得到的结果优于Chen和Ponnusamy等的结果.
Abstract:
Let F be a biharmonic mapping on the unit disk D,L=zz-,it is a linear complex operator,using the coefficient inequalities for bounded harmonic mappings,we obtain a better univalent radius for biharmonic mappings L(F).Our results improve the one made by Chen and Ponnusamy.

参考文献/References:

[1] ABDULHADI Z, MUHANNA Y A, KHURI S. On some properties of solutions of the biharmonic equation [J]. Applied Mathematics and Computation, 2006(1):346-351.doi:10.1016/j.amc.2005.11.013.
[2] DUREB P. Harmonic mappings in the plane [M]. Cabridge:Cabridge Univ Press, 2004.
[3] ABDULHADI Z, MUHANNA Y A. Landau’s theorem for biharmonic mappings [J]. Journal of Mathematical Analysis and Applications, 2008(1):705-709.doi:10.1016/j.jmaa.2007.05.065.
[4] CHEN S, PONNUSAMY S, WANG X. Landau’s theorem for certain biharmonic mappings [J]. Applied Mathematics and Computation, 2009(2):427-433.doi:10.1016/j.amc.2008.12.016.
[5] LEWY H. On the non-vanishing of the Jacobian in certain one-to-one mappings [J]. Bulletin of the American Mathematical Society, 1936, (10):689-692.doi:10.1090/S0002-9904-1936-06397-4.
[6] CHEN H H, GAUTHIER P M, HENGARTNER W. Bloch constants for planar harmonic mappings [J]. Proceedings of the American Mathematical Society, 2000, (11):3231-3240.doi:10.1090/S0002-9939-00-05590-8.
[7] HUANG Xin-zhong. Estimates on Bloch constants for planar harmonic mappings [J]. Journal of Mathematical Analysis and Applications, 2007(2):880-887.
[8] LIU Ming-sheng. Landau’s theorem for planar harmonic mappings [J]. Computers and Mathematics with Appications, 2009(7):1142-1146.doi:10.1016/j.camwa.2009.01.009.
[9] LIU Ming-sheng. Estimates on bloch constants for planar harmonic mappings [J]. Science China(Mathematics), 2008(1):87-93.
[10] LIU Ming-sheng. Landau’s theorems for biharmonic mappings [J]. Comlex Variables and Elliptic Equations, 2008(9):843-855.

相似文献/References:

[1]李西振,陈行堤.Bloch型双调和映照[J].华侨大学学报(自然科学版),2017,38(5):737.[doi:10.11830/ISSN.1000-5013.201609021]
 LI Xizhen,CHEN Xingdi.On Biharmonic Bloch-Type Mappings[J].Journal of Huaqiao University(Natural Science),2017,38(2):737.[doi:10.11830/ISSN.1000-5013.201609021]

备注/Memo

备注/Memo:
福建省自然科学基金项目(2008J0195)
更新日期/Last Update: 2014-03-23