参考文献/References:
[1] EHM W. Sample function properties of mutli-parameter stable processes [J]. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 1981, (2):195-228.
[2] EHM W. Sample function properties of mutli-parameter stable processes [J]. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 1981(2):195-228.
[3] 林火南. Wiener单的局部时和水平集Hausdorff测度 [B]. 中国科学A辑, 2000, (10):869-880.
[4] 林火南. Wiener单的局部时和水平集的Hausdorff测度 [J]. 中国科学A辑, 2000, (10):869-880.doi:10.3321/j.issn:1006-9232.2000.10.002.
[5] KHOSHNEVISAN D, SHI Z. Brownian sheet and capacity [J]. Annals of Probability, 1999(3):1135-1159.
[6] KHOSHNEVISAN D, SHI Z. Brownian sheet and capacity [J]. Annals of Probability, 1999, (3):1135-1159.
[7] OREY S, PRUITT N E. Sample function of the N-parameter Wiener process [J]. Annals of Probability, 1973(1):138-163.doi:10.1214/aop/1176997030.
[8] OREY S, PRUITT N E. Sample function of the N-parameter Wiener process [J]. Annals of Probability, 1973, (1):138-163.
[9] 黄群, 林火南. 布朗单样本轨道的重分形分析 [A]. 福建师范大学学报(自然科学版), 2003, (2):1-8.
[10] 黄群, 林火南. 布朗单样本轨道的重分形分析 [J]. 福建师范大学学报(自然科学版), 2003(2):1-8.doi:10.3969/j.issn.1000-5277.2003.02.001.
[11] 黄群. 布朗单的矩形增量快点集Hausdorff维数 [J]. 莆田学院学报, 2007(2):34-37.doi:10.3969/j.issn.1672-4143.2007.02.008.
[12] 黄群. 布朗单的矩形增量快点集Hausdorff维数 [A]. 莆田学院学报, 2007, (2):34-37, 57.
[13] FALCONER K J. Fractal geometry-mathematical foundations and application [M]. New York:John Wiley & -Sons, 1990.
[14] FALCONER K J. Fractal geometry-mathematical foundations and application [M]. New York:John Wiley & -Sons, 1990.
[15] DEMBO A, PERES Y, ROSEN J. Thick points for spatial Brownian motion:Multifractal analysis of occupation measure [J]. Annals of Probability, 2000(1):1-35.
[16] DEMBO A, PERES Y, ROSEN J. Thick points for spatial Brownian motion:Multifractal analysis of occupation measure [J]. Annals of Probability, 2000, (1):1-35.
[17] OREY S, TAYLOR S J. How often on a Brownian path does the law of iterated logarithm fail [J]. Proceedings of the London Mathematical Society, 1974(1):174-192.doi:10.1112/plms/s3-28.1.174.
[18] OREY S, TAYLOR S J. How often on a Brownian path does the law of iterated logarithm fail [J]. Proceedings of the London Mathematical Society, 1974, (1):174-192.
相似文献/References:
[1]邱志平,林火南.可加布朗运动增量“快点”集的Packing维数[J].华侨大学学报(自然科学版),2010,31(4):480.[doi:10.11830/ISSN.1000-5013.2010.04.0480]
QIU Zhi-ping,LIN Huo-nan.Packing Dimension of "Fast Point" Sets for Additive Brownian Motion[J].Journal of Huaqiao University(Natural Science),2010,31(1):480.[doi:10.11830/ISSN.1000-5013.2010.04.0480]