[1]张星,单双荣.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),2010,31(6):703-705.[doi:10.11830/ISSN.1000-5013.2010.06.0703]
 ZHANG Xing,SHAN Shuang-rong.Explicit Difference Scheme of High Accuracy for Solving Four-Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2010,31(6):703-705.[doi:10.11830/ISSN.1000-5013.2010.06.0703]
点击复制

解四阶抛物型方程的高精度显式差分格式()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第6期
页码:
703-705
栏目:
出版日期:
2010-11-20

文章信息/Info

Title:
Explicit Difference Scheme of High Accuracy for Solving Four-Order Parabolic Equation
文章编号:
1000-5013(2010)06-0703-03
作者:
张星单双荣
华侨大学数学科学学院
Author(s):
ZHANG Xing SHAN Shuang-rong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
四阶抛物型方程 高精度 显式差分格式 稳定性 截断误差
Keywords:
four-order parabolic equation high accuracy explicit difference scheme stability
分类号:
O241.82
DOI:
10.11830/ISSN.1000-5013.2010.06.0703
文献标志码:
A
摘要:
对四阶抛物型方程ut+uxxxx=0,构造一个新的三层显式差分格式,其稳定性条件和局部截断误差阶分别为r=τ/h4≤1/8和O(2τ+h6),其结果优于其他四阶抛物型方程的结果.数值例子表明,理论分析是正确的,该格式是有效的.
Abstract:
In this paper,a three-level explicit difference scheme is proposed for solving four-order parabolic equation ut+uxxxx=0.The scheme meets a stability condition of r=τ/h4≤1/8 and shows a local truncation error of O(τ2+h6).It is showed that the scheme is effective and the analysis of stability is right by a numerical example.

参考文献/References:

[1] САУЛЪЕВК, 袁兆鼎. 抛物型方程的网格积分法 [M]. 北京:科学出版社, 1963.143-152.
[2] 曾文平. 解四阶抛物型方程的高精度显式差分格式 [J]. 华侨大学学报(自然科学版), 1997(2):122-127.
[3] 单双荣. 解四阶抛物型方程的高精度差分格式 [J]. 华侨大学学报(自然科学版), 2003(1):11-15.doi:10.3969/j.issn.1000-5013.2003.01.002.
[4] 林鹏程. 解四阶抛物型方程的绝对稳定高精度差分格式 [J]. 厦门大学学报(自然科学版), 1994(6):756-759.
[5] MILLER J J H. On the location of zeros of certain classes of polynomials with application to numerical analysis [J]. Journal of the Institute of Mathematics and Its Applications, 1971(3):394-406.doi:10.1093/imamat/8.3.397.
[6] 矢岛信男, 野术达夫. 发展方程の数值分析 [M]. 东京:岩波书店, 1977.46-232.
[7] RICHTMYER R D, MORTON K W. Difference method for initial-value problems [M]. New York:wiley, 1967.59-91.

相似文献/References:

[1]夏正权,沈子镛.高精度和大直径内螺纹挤压攻丝的机理与实践[J].华侨大学学报(自然科学版),1987,8(4):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
 Xia Zhengquan,Shen Jiyong.A High Precision and Large Diameter Internal Threading by Extrusion[J].Journal of Huaqiao University(Natural Science),1987,8(6):430.[doi:10.11830/ISSN.1000-5013.1987.04.0430]
[2]张宗欣.高精度位置传感器及其在液压轧机上的应用[J].华侨大学学报(自然科学版),1988,9(4):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
 Zhang Zongxin.A High Accuracy Position Sensor and Its Application to Hydraulic Mill[J].Journal of Huaqiao University(Natural Science),1988,9(6):539.[doi:10.11830/ISSN.1000-5013.1988.04.0539]
[3]曾文平.两类含参数高精度恒稳的半显式差分格式[J].华侨大学学报(自然科学版),1993,14(2):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
 Zeng Wenping.Two Classes of Absolutely Stable and High Accuracy Difference Schemes Depending on a Parameter[J].Journal of Huaqiao University(Natural Science),1993,14(6):133.[doi:10.11830/ISSN.1000-5013.1993.02.0133]
[4]曾文平.解三维抛物型方程的高精度显式格式[J].华侨大学学报(自然科学版),1995,16(2):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
 Zeng Wenping.High Accuracy Explicit Difference Schemes for Solving Three-Dimensional Equation of the Parabola[J].Journal of Huaqiao University(Natural Science),1995,16(6):128.[doi:10.11830/ISSN.1000-5013.1995.02.0128]
[5]曾文平.四阶抛物型方程两类新的恒稳差分格式[J].华侨大学学报(自然科学版),1997,18(4):334.[doi:10.11830/ISSN.1000-5013.1997.04.0334]
[6]曾文平.解二维抛物型方程的恒稳高精度格式[J].华侨大学学报(自然科学版),1999,20(1):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
 Zeng Wenping.A Family of Steady and High Accurate Difference Schemes for Solving Two Dimensional Equations of Parabolic Type[J].Journal of Huaqiao University(Natural Science),1999,20(6):18.[doi:10.11830/ISSN.1000-5013.1999.01.0018]
[7]黄浪扬,曾文平.抛物型方程的一族高精度恒稳格式[J].华侨大学学报(自然科学版),2000,21(2):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
 Huang langyang,Zeng Wenping.A Group of Steady Difference Schemes wth High Accuracy for Solving Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2000,21(6):124.[doi:10.3969/j.issn.1000-5013.2000.02.004]
[8]曾文平.抛物型方程的一族双参数高精度恒稳格式[J].华侨大学学报(自然科学版),2002,23(4):327.[doi:10.3969/j.issn.1000-5013.2002.04.001]
[9]单双荣.解四阶抛物型方程的高精度差分格式[J].华侨大学学报(自然科学版),2003,24(1):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
 Shan Shuangrong.Difference Schemes of High Accuracy for SolvingParabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(6):11.[doi:10.3969/j.issn.1000-5013.2003.01.002]
[10]曾文平.对流方程一族新的三层双参数高精度格式[J].华侨大学学报(自然科学版),2003,24(1):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
 Zeng Wenping.A New Family of Three-Layer and Bi-Parametric Difference Schemes with High Accuracy for Solving Convection Equation[J].Journal of Huaqiao University(Natural Science),2003,24(6):22.[doi:10.3969/j.issn.1000-5013.2003.01.004]
[11]曾文平.解四阶抛物型方程高精度恒稳的隐式格式[J].华侨大学学报(自然科学版),1996,17(4):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
 Zeng Wenping.A Class of High Accurate and Absolutely Stable Implicit Difference Schemes for Solving Four Order Parabolic Equations[J].Journal of Huaqiao University(Natural Science),1996,17(6):331.[doi:10.11830/ISSN.1000-5013.1996.04.0331]
[12]曾文平.解四阶抛物型方程的高精度显式差分格式[J].华侨大学学报(自然科学版),1997,18(2):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
 Zeng Wenping.Explicit Difference Scheme of High Accuracy for Solving Four Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),1997,18(6):122.[doi:10.11830/ISSN.1000-5013.1997.02.0122]
[13]曾文平.四阶抛物型方程的一族高精度恒稳的差分格式[J].华侨大学学报(自然科学版),2003,24(3):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
 Zeng Wenping.A Family of Highly Accurate and Absolutely Stable Difference Schemes for Solving Parabolic Equation of Four Order[J].Journal of Huaqiao University(Natural Science),2003,24(6):245.[doi:10.3969/j.issn.1000-5013.2003.03.004]
[14]崔晓鹏,单双荣.解四阶抛物型方程的两层高精度差分格式[J].华侨大学学报(自然科学版),2011,32(6):710.[doi:10.11830/ISSN.1000-5013.2011.06.0710]
 CUI Xiao-peng,SHAN Shuang-rong.High-Accurate and Two-Layer Difference Schemes for Solving Four-Order Parabolic Equation[J].Journal of Huaqiao University(Natural Science),2011,32(6):710.[doi:10.11830/ISSN.1000-5013.2011.06.0710]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(04QZR09)
更新日期/Last Update: 2014-03-23