[1]吕俊白.小波系数局部特征的自适应图像降噪算法[J].华侨大学学报(自然科学版),2010,31(6):636-640.[doi:10.11830/ISSN.1000-5013.2010.06.0636]
 Lü Jun-bai.Adaptive Algorithm for Image Denoising Based on Local Characteristic of Wavelet Coefficient[J].Journal of Huaqiao University(Natural Science),2010,31(6):636-640.[doi:10.11830/ISSN.1000-5013.2010.06.0636]
点击复制

小波系数局部特征的自适应图像降噪算法()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第6期
页码:
636-640
栏目:
出版日期:
2010-11-20

文章信息/Info

Title:
Adaptive Algorithm for Image Denoising Based on Local Characteristic of Wavelet Coefficient
文章编号:
1000-5013(2010)06-0636-05
作者:
吕俊白
华侨大学计算机科学与技术学院
Author(s):
Lü Jun-bai
College of Computer Science and Technology, Huaqiao University, Quanzhou 362021, China
关键词:
图像降噪 整数提升 小波变换 分解级数 自适应阈值 峰值信噪比
Keywords:
image denoising integer lifting wavelet transform decomposition scale adaptive thresholding peak signal to noise rate
分类号:
TP391.41
DOI:
10.11830/ISSN.1000-5013.2010.06.0636
文献标志码:
A
摘要:
在Visu Shrink和基于Bayes准则的Bayes Shrink去噪方法的基础上,提出一种基于小波系数局部特征的自适应图像降噪算法.该算法从含噪图像的HH1子带估算噪声信号的标准差,并据此优化小波分解所需的级数; 然后,根据小波系数的局部特征,自适应地选择不同子带不同方向上的最佳阈值,运用软阈值函数对图像进行降噪.与传统方法相比,该方法不仅提高图像的峰值信噪比,使图像更清晰,而且具有实现简单、运算速度快的特点.
Abstract:
Based on the Visu Shrink and the Bayes Shrink derived in a Bayesian framework,a new adaptive algorithm for image denoising based on local characteristic of wavelet coefficient is proposed.First,the noise standard deviation is estimated from the subband HH1 to optimize the scale in the wavelet decomposition,then the optimal threshold for different subbands and orientations is determined according to the local characteristics.The image denoising is made by using soft-thresholding function.Comparing with traditional denoising algorithm,this algorithm can improve the peak signal to noise ratio(PSNR) more effectively and also makes denoised image more clearly,it can compute fast with a simple implementation.

参考文献/References:

[1] DAUBECHIES I, SWELDENS W. Factoring wavelet transforms into lifting steps [J]. Journal of Fourier Analysis and Applications, 1998(3):247-269.doi:10.1007/BF02476026.
[2] SWELDENS W. The lifting scheme:A construction of second generation wavelets [J]. SIAM Journal on Mathematical Analysis, 1997(2):511-546.doi:10.1137/S0036141095289051.
[3] SWELDENS W. The lifting scheme:A custom-design construction of biorthogonal wavelets [J]. Applied and Computational Harmonic Analysis, 1996(2):186-200.
[4] CALDERBANK A R, DAUBECHIES I, SWELDENS W. Wavelet transforms that map integers to integers [J]. Applied and Computational Harmonic Anakysis, 1998(3):332-369.
[5] DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, (432):1200-1204.
[6] DONOHO D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information theory, 1995(3):613-627.doi:10.1109/18.382009.
[7] CHANG S G, VETTERLI M, YU B. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Transactions on Image Processing, 2000(9):1532-1546.doi:10.1109/83.862633.
[8] 徐传忠, 杨冠鲁. 一种小波提升的电力有源滤波器 [J]. 华侨大学学报(自然科学版), 2004(4):366-370.doi:10.3969/j.issn.1000-5013.2004.04.007.
[9] POORNACHANDRA S. Wavelet-based denoising using subband dependent threshold for ECG signals [J]. Digital Signal Processing, 2008(1):49-55.doi:10.1016/j.dsp.2007.09.006.

更新日期/Last Update: 2014-03-23