[1]汪东树,王全义.脉冲时滞Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2010,31(5):590-596.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays[J].Journal of Huaqiao University(Natural Science),2010,31(5):590-596.[doi:10.11830/ISSN.1000-5013.2010.05.0590]
点击复制

脉冲时滞Lotka-Volterra竞争系统的正周期解()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第5期
页码:
590-596
栏目:
出版日期:
2010-09-20

文章信息/Info

Title:
Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Delays
文章编号:
1000-5013(2010)05-0590-07
作者:
汪东树王全义
华侨大学数学科学学院
Author(s):
WANG Dong-shu WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Lotka-Volterra竞争系统 时滞 脉冲 周期解 重合度理论
Keywords:
delay impulse positive periodic solution coincidence degree theory
分类号:
O175.6
DOI:
10.11830/ISSN.1000-5013.2010.05.0590
文献标志码:
A
摘要:
研究一类具有脉冲和分布时滞的非自治周期的Lotka-Volterra竞争系统.利用重合度理论,得到该系统存在正周期解的新结果.该结果表明,脉冲效应对该系统正周期解存在性是有影响的.
Abstract:
In this paper,a Lotka-Volterra competition system with impulses and delays is investigated.By means of coincidence degree theory and some analysis techniques,we obtain a new result on the existence of positive periodic solutions to the system,which shows that impact of impulsive effects on existence of positive periodic to the system.

参考文献/References:

[1] WANG W, MA Z. Harmless delays for uniform persistence [J]. Journal of Mathematical Analysis and Applications, 1991.256-268.
[2] LI Y, XU G. Periodic solutions for a distributed delay competition model [J]. Applicable Analysis, 2001.55-61.doi:10.1080/00036810108840926.
[3] LI Xian-yi, ZHU De-ming. Global existence of positive periodic solutions for a distributed delay competition model [J]. Acta Mathematicae Applicatae Sinica, 2003(3):491-498.
[4] SAITO Y. Permanence and global stability for general Lotka-Volterra predator prey systems with distributed delays [J]. Nonlinear Analysis, 2001.6157-6168.doi:10.1016/S0362-546X(01)00680-0.
[5] 汪东树, 王全义. 一类具时滞和比率的扩散系统正周期解 [J]. 华侨大学学报(自然科学版), 2006(4):358-361.doi:10.3969/j.issn.1000-5013.2006.04.006.
[6] GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations [M]. Beilin:Springer-Verlag, 1977.40-60.

相似文献/References:

[1]王全义.关于捕食者-食饵系统正周期解存在性的一个反例[J].华侨大学学报(自然科学版),2007,28(1):111.[doi:10.3969/j.issn.1000-5013.2007.01.030]
 WANG Quan-yi.A Counterexample on the Existence of Positive Periodic Solutions for Two-Species Predator-Prey Diffusive Systems[J].Journal of Huaqiao University(Natural Science),2007,28(5):111.[doi:10.3969/j.issn.1000-5013.2007.01.030]
[2]汪东树,王全义.一类具多时滞和脉冲Lotka-Volterra竞争系统的正周期解[J].华侨大学学报(自然科学版),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of a Lotka-Volterra Competition System with Impulses and Several Delays[J].Journal of Huaqiao University(Natural Science),2011,32(5):592.[doi:10.11830/ISSN.1000-5013.2011.05.0592]
[3]汪东树,王全义.具时滞和脉冲的植化相克系统周期正解[J].华侨大学学报(自然科学版),2012,33(4):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
 WANG Dong-shu,WANG Quan-yi.Positive Periodic Solutions of Two-Specics Impulsive Systems with Time Delays in Plankton Allelopathy[J].Journal of Huaqiao University(Natural Science),2012,33(5):460.[doi:10.11830/ISSN.1000-5013.2012.04.0460]
[4]徐昌进,姚凌云.具有时滞的神经网络模型的分支分析[J].华侨大学学报(自然科学版),2012,33(6):694.[doi:10.11830/ISSN.1000-5013.2012.06.0694]
 XU Chang-jin,YAO Ling-yun.Bifurcation Analysis of a Delayed Neural Networks[J].Journal of Huaqiao University(Natural Science),2012,33(5):694.[doi:10.11830/ISSN.1000-5013.2012.06.0694]
[5]佘志炜,王全义.一类一阶泛函微分方程非平凡周期解的存在性[J].华侨大学学报(自然科学版),2013,34(4):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]
 SHE Zhi-wei,WANG Quan-yi.Existence of Nontrivial Periodic Solutions for a Class of First Order Nonlinear Functional Differential Equations[J].Journal of Huaqiao University(Natural Science),2013,34(5):460.[doi:10.11830/ISSN.1000-5013.2013.04.0460]
[6]章培军,王震,杨颖惠.具有收获和Beddington-DeAngelis功能反应的捕食-食饵模型[J].华侨大学学报(自然科学版),2017,38(4):579.[doi:10.11830/ISSN.1000-5013.201704025]
 ZHANG Peijun,WANG Zhen,YANG Yinghui.Predator-Prey Model With Beddington-DeAngelis Functional Response and Harvesting[J].Journal of Huaqiao University(Natural Science),2017,38(5):579.[doi:10.11830/ISSN.1000-5013.201704025]
[7]李艳艳,李钟慎.二阶时滞多智能体系统分组一致性分析[J].华侨大学学报(自然科学版),2021,42(1):9.[doi:10.11830/ISSN.1000-5013.202006004]
 LI Yanyan,LI Zhongshen.Group Consensus Analysis on Second-Order Multi-AgentSystems With Time Delay[J].Journal of Huaqiao University(Natural Science),2021,42(5):9.[doi:10.11830/ISSN.1000-5013.202006004]

备注/Memo

备注/Memo:
国务院侨办科研基金资助项目(07QZR09,09QZR10); 福建省自然科学基金资助项目(Z0511026)
更新日期/Last Update: 2014-03-23