[1]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476-479.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(4):476-479.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
点击复制

单位圆上调和拟共形映照的复特征估计()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第4期
页码:
476-479
栏目:
出版日期:
2010-07-20

文章信息/Info

Title:
Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk
文章编号:
1000-5013(2010)04-0476-04
作者:
朱剑峰
华侨大学数学科学学院
Author(s):
ZHU Jian-feng
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和映照 拟共形映照 伸缩商 偏差估计
Keywords:
harmonic mapping quasiconformal mapping dilatation distortion estimate
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.2010.04.0476
文献标志码:
A
摘要:
设f(x)=exp[iγ(x)]为单位圆周D到自身上的保向同胚映照,w=P[f](z)是单位圆D到自身上的单叶调和函数,f(x)为边界值.研究边界函数f(x),得到Jw的一个良好估计.当w为调和拟共形映照时,对其复特征|w w|进行估计.
Abstract:
Let f(x)=exp(iγ(x)) be a sense-preserving homeomorphism of the unit disk,w=P[f](z) be a harmonic mapping of the unit disk onto itself with boundary values f(x).In this article,by studying the boundory function f(x),we obtain a good estimate for Jw.If w is a harmonic quasiconformal mapping,the complex dilatation of w.

参考文献/References:

[1] PAVLOVIC M. Boundary correspondence under harmonic quasiconformal homeomorphisma of the unit disk [J]. Ann Acad Sci Fenn (Series A1):Math, 2002(2):365-372.
[2] KALAJ D. Quasiconformal harmonic functions between convex domains [J]. Publications De L’Institut Mathématique, 2004, (90):3-20.doi:10.2298/PIM0476003K.
[3] PARTYKA D, SAKAN K. On an asymptotically sharp variant of Heinz’s inequality [J]. Ann Acad Sci Fenn (Series A1):Math, 2005(1):167-182.
[4] PARTYKA D, SAKAN K. On bi-lipschitz type inequalitites for quasiconformal harmonic mappings [J]. Ann Acad Sci Fenn (Series A1):Math, 2007(2):579-594.
[5] BEUELING A L, AHLFORS V. The boundary correspondence under quasiconformal mapping [J]. Acta Mathematica, 1956(1):124-142.
[6] LETHO O. Univalent functions and teichmuller spaces [M]. New York:springer-verlag, 1987.
[7] CLUNIE J, SHEILl-SMALL T. Harmonic univalent functions [J]. Ann Acad Sci Fenn (Series A1):Math, 1984(1):3-25.
[8] 吴瑞溢, 黄心中. Salagean类单叶调和函数的特征 [J]. 华侨大学学报(自然科学版), 2008(2):308-311.
[9] 韩雪, 黄心中. 两类单叶调和函数的偏差估计 [J]. 华侨大学学报(自然科学版), 2008(4):618-621.

相似文献/References:

[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
 Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(4):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
 Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
 Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(4):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
 LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(4):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(4):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[6]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(4):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[7]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(4):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[8]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
 ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(4):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
[9]李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
 LI Dong-zheng,CHEN Xing-di.Landau Theorem for Planar Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(4):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
[10]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
 WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(4):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[11]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(4):351.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
[12]李鸿萍.调和映照与调和K-拟共形映照的边界Schwarz引理[J].华侨大学学报(自然科学版),2022,43(2):279.[doi:10.11830/ISSN.1000-5013.202011023]
 LI Hongping.Boundary Schwarz Lemma for Harmonic Mappings and Harmonic K-Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2022,43(4):279.[doi:10.11830/ISSN.1000-5013.202011023]

备注/Memo

备注/Memo:
华侨大学科研基金资助项目(08HZR19)
更新日期/Last Update: 2014-03-23