参考文献/References:
[1] AHLFORS L V. Complex analysis [M]. New York:McGraw-Hill Book Company, Inc, 1979.
[2] LEWY H. On the non-vanishing of the Jacobian in certain one to one mapings [J]. Bulletin of the American Mathematical Society, 1936, (10):689-692.
[3] PARTYKA D, SAKAN K I. On an asymptotically sharp variant of Heinz’s inequality [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005(1):167-182.
[4] ASTALA K. Area distortion of quasiconformal mappings [J]. Acta Mathematica, 1994(1):37-60.
[5] CHEN Xing-di, FANG Ainong. Harmonic Teichmüller mappings [J]. Proceedings of the Japan Academy, Series A Mathematical Sciences, 2006(7):101-105.
[6] KELINGOS J A. Distortion of hyperbolic area under quasiconformal mappings [J]. Duke Mathematical Journal, 1974(1):127-139.
[7] PORTER R M, RESNDIS L F. Quasiconformally explodable sets [J]. Complex Variables, 1998(4):379-392.
[8] 陈行堤, 黄心中. 拟共形映照的爆破集问题 [J]. 华侨大学学报(自然科学版), 2001(2):111-116.doi:10.3969/j.issn.1000-5013.2001.02.001.
[9] CHEN Xing-di, HUANG Xin-zhong. On the estimates of hyperbolic area distortion of quasiconformal mappings [J]. Chinese Quarterly Journal of Mathematics, 2007(1):137-142.doi:10.3969/j.issn.1002-0462.2007.01.023.
[10] 韩雪, 黄心中. 拟共形映照的双曲面积偏差 [J]. 华侨大学学报(自然科学版), 2007(4):433-436.doi:10.3969/j.issn.1000-5013.2007.04.026.
[11] KALAJ D, PAVLOVIC M. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005(1):159-165.
[12] AHLFORS L V. Conformal invariants:Topics in geometric function theory [M]. New York:mcgraw-hill Book Company, inc, 1973.
[13] WAN T. Constant mean curvature surface, harmonic maps and universal Teichmüller space [J]. Journal of Differential Geometry, 1992(3):643-657.
[14] YAO Guo-wu. Convergence of harmonic maps on the Poincaré disk [J]. Proceedings of the American Mathematical Society, 2004(8):2483-2493.doi:10.1090/S0002-9939-04-07465-9.
相似文献/References:
[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(3):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(3):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(3):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(3):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[6]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(3):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[7]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(3):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[8]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(3):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
[9]李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
LI Dong-zheng,CHEN Xing-di.Landau Theorem for Planar Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(3):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
[10]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(3):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[11]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(3):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[12]李鸿萍.调和映照与调和K-拟共形映照的边界Schwarz引理[J].华侨大学学报(自然科学版),2022,43(2):279.[doi:10.11830/ISSN.1000-5013.202011023]
LI Hongping.Boundary Schwarz Lemma for Harmonic Mappings and Harmonic K-Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2022,43(3):279.[doi:10.11830/ISSN.1000-5013.202011023]