[1]陈行堤.调和拟共形映照双曲雅可比的偏差性质[J].华侨大学学报(自然科学版),2010,31(3):351-355.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
 CHEN Xing-di.Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(3):351-355.[doi:10.11830/ISSN.1000-5013.2010.03.0351]
点击复制

调和拟共形映照双曲雅可比的偏差性质()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第3期
页码:
351-355
栏目:
出版日期:
2010-05-20

文章信息/Info

Title:
Distortion Estimations of the Hyperbolic Jacobians of Harmonic Quasiconformal Mappings
文章编号:
1000-5013(2010)03-0351-05
作者:
陈行堤
华侨大学数学科学学院
Author(s):
CHEN Xing-di
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
调和映照 拟共形映照 双曲雅可比 双曲面积
Keywords:
harmonic mappings quasiconformal mappings hyperbolic Jacobians hyperbolic areas
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.2010.03.0351
文献标志码:
A
摘要:
研究两类调和拟共形映照双曲雅可比和双曲面积的偏差性质,给出上半平面到自身上的欧氏调和拟共形映照双曲雅可比的精确界限,以及达到极值的函数.研究双曲调和拟共形映照双曲雅可比的偏差估计,并应用于两类调和拟共形映照双曲面积的偏差估计.结果表明,这两类调和拟共形照是非爆破的.
Abstract:
The distortion estimation with respect to the hyperbolic metrics of two classes of harmonic quasiconformal mappings is studied.First,the sharp upper and lower bounds of the hyperbolic Jacobians of Euclidean harmonic quasiconformal mappings from the upper half-plane onto itself and their corresponding extremal functions are given.Secondly,the distortion estimation of hyperbolic Jacobian of hyperbolic quasiconformal mappings are obtained.Finally,the distortion estimation of the above two classes of mappings is applied to study their corresponding distortion theorems about hyperbolic areas.The results show that the above two classes of harmonic quasiconformal mappings are non-explodable.

参考文献/References:

[1] AHLFORS L V. Complex analysis [M]. New York:McGraw-Hill Book Company, Inc, 1979.
[2] LEWY H. On the non-vanishing of the Jacobian in certain one to one mapings [J]. Bulletin of the American Mathematical Society, 1936, (10):689-692.
[3] PARTYKA D, SAKAN K I. On an asymptotically sharp variant of Heinz’s inequality [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005(1):167-182.
[4] ASTALA K. Area distortion of quasiconformal mappings [J]. Acta Mathematica, 1994(1):37-60.
[5] CHEN Xing-di, FANG Ainong. Harmonic Teichmüller mappings [J]. Proceedings of the Japan Academy, Series A Mathematical Sciences, 2006(7):101-105.
[6] KELINGOS J A. Distortion of hyperbolic area under quasiconformal mappings [J]. Duke Mathematical Journal, 1974(1):127-139.
[7] PORTER R M, RESNDIS L F. Quasiconformally explodable sets [J]. Complex Variables, 1998(4):379-392.
[8] 陈行堤, 黄心中. 拟共形映照的爆破集问题 [J]. 华侨大学学报(自然科学版), 2001(2):111-116.doi:10.3969/j.issn.1000-5013.2001.02.001.
[9] CHEN Xing-di, HUANG Xin-zhong. On the estimates of hyperbolic area distortion of quasiconformal mappings [J]. Chinese Quarterly Journal of Mathematics, 2007(1):137-142.doi:10.3969/j.issn.1002-0462.2007.01.023.
[10] 韩雪, 黄心中. 拟共形映照的双曲面积偏差 [J]. 华侨大学学报(自然科学版), 2007(4):433-436.doi:10.3969/j.issn.1000-5013.2007.04.026.
[11] KALAJ D, PAVLOVIC M. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane [J]. Annales Academiae Scientiarum Fennicae Series AI Mathematica, 2005(1):159-165.
[12] AHLFORS L V. Conformal invariants:Topics in geometric function theory [M]. New York:mcgraw-hill Book Company, inc, 1973.
[13] WAN T. Constant mean curvature surface, harmonic maps and universal Teichmüller space [J]. Journal of Differential Geometry, 1992(3):643-657.
[14] YAO Guo-wu. Convergence of harmonic maps on the Poincaré disk [J]. Proceedings of the American Mathematical Society, 2004(8):2483-2493.doi:10.1090/S0002-9939-04-07465-9.

相似文献/References:

[1]刘增荣.Reich 的一个定理的改进[J].华侨大学学报(自然科学版),1989,10(1):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
 Liu Zengrong.Improvement of a Theorem by Reich[J].Journal of Huaqiao University(Natural Science),1989,10(3):1.[doi:10.11830/ISSN.1000-5013.1989.01.0001]
[2]王朝祥,黄心中.分段拟对称为整体拟对称函数的偏差估计[J].华侨大学学报(自然科学版),2003,24(4):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
 Wang Chaoxiang,Huang Xinzhong.Estimate the Distortion for a Piecewise Quasi-Symmetric Function to be Turned into a Global One[J].Journal of Huaqiao University(Natural Science),2003,24(3):345.[doi:10.3969/j.issn.1000-5013.2003.04.002]
[3]王朝祥,黄心中.闭区间上Zygmund函数的延拓定理[J].华侨大学学报(自然科学版),2006,27(2):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
 Wang Chaoxiang,Huang Xinzhong.On the Extension Theorem for Zygmund Functions in Closed Interval[J].Journal of Huaqiao University(Natural Science),2006,27(3):119.[doi:10.3969/j.issn.1000-5013.2006.02.002]
[4]林珍连.关于“Beurling-Ahlfors扩张的推广”一文的一点注[J].华侨大学学报(自然科学版),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
 LIN Zhen-lian.A Note on the Paper of the Generalization of Beurling-Ahlfors′ Extension[J].Journal of Huaqiao University(Natural Science),2007,28(3):335.[doi:10.3969/j.issn.1000-5013.2007.03.029]
[5]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(3):704.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
[6]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(3):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[7]朱剑峰,黄心中.两类调和函数的拟共形性质[J].华侨大学学报(自然科学版),2011,32(6):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
 ZHU Jian-feng,HUANG Xin-zhong.Quasi-Conformality for Two Classes of Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(3):705.[doi:10.11830/ISSN.1000-5013.2011.06.0705]
[8]朱剑峰,王朝祥,黄心中.单位圆上调和映照的单叶半径[J].华侨大学学报(自然科学版),2012,33(5):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
 ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong.Univalent Radius of Harmonic Mapping in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2012,33(3):581.[doi:10.11830/ISSN.1000-5013.2012.05.0581]
[9]李东征,陈行堤.调和映照的Landau定理[J].华侨大学学报(自然科学版),2012,33(5):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
 LI Dong-zheng,CHEN Xing-di.Landau Theorem for Planar Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(3):584.[doi:10.11830/ISSN.1000-5013.2012.05.0584]
[10]王其文,黄心中.某些调和函数的系数估计与像区域的近于凸性质[J].华侨大学学报(自然科学版),2013,34(2):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
 WANG Qi-wen,HUANG Xin-zhong.Coefficient Estimate and Close-to-Convex Image Domain Property for Some Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2013,34(3):225.[doi:10.11830/ISSN.1000-5013.2013.02.0225]
[11]朱剑峰.单位圆上调和拟共形映照的复特征估计[J].华侨大学学报(自然科学版),2010,31(4):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
 ZHU Jian-feng.Estimate for the Dilatation of Harmonic Quasiconformal Mappings in the Unit Disk[J].Journal of Huaqiao University(Natural Science),2010,31(3):476.[doi:10.11830/ISSN.1000-5013.2010.04.0476]
[12]李鸿萍.调和映照与调和K-拟共形映照的边界Schwarz引理[J].华侨大学学报(自然科学版),2022,43(2):279.[doi:10.11830/ISSN.1000-5013.202011023]
 LI Hongping.Boundary Schwarz Lemma for Harmonic Mappings and Harmonic K-Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2022,43(3):279.[doi:10.11830/ISSN.1000-5013.202011023]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(S0650019); 华侨大学高层次人才科研启动项目(08BS107)
更新日期/Last Update: 2014-03-23