[1]佘志炜,王全义.一类二阶微分方程周期解的存在性[J].华侨大学学报(自然科学版),2010,31(2):235-240.[doi:10.11830/ISSN.1000-5013.2010.02.0235]
 SHE Zhi-wei,WANG Quan-yi.Existence of Periodic Solutions for a Class of Second Order Differential Equations[J].Journal of Huaqiao University(Natural Science),2010,31(2):235-240.[doi:10.11830/ISSN.1000-5013.2010.02.0235]
点击复制

一类二阶微分方程周期解的存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第2期
页码:
235-240
栏目:
出版日期:
2010-03-20

文章信息/Info

Title:
Existence of Periodic Solutions for a Class of Second Order Differential Equations
文章编号:
1000-5013(2010)02-0235-06
作者:
佘志炜王全义
华侨大学数学科学学院
Author(s):
SHE Zhi-wei WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
微分方程 周期解 重合度 偏差变元 存在性
Keywords:
differential equation periodic solution coincidence degree deviating argument existence
分类号:
O175.14
DOI:
10.11830/ISSN.1000-5013.2010.02.0235
文献标志码:
A
摘要:
研究一类具有偏差变元的二阶微分方程x″(t)+f(x′(t))+h(x(t))x′(t)+g(t,x(t-τ(t)))=p(t)的周期解的存在性问题.通过应用Schwarz不等式,Minkowski不等式,以及重合度理论,在满足一定条件下,得到方程至少存在一个T-周期解的新结果,且其周期解存在性的充分条件并不要求h(x)是有界函数.
Abstract:
In this paper,we study the problem on the existence of periodic solutions for a class of second order differential equations with a deviating argument x″(t)+f(x′(t))+h(x(t))x′(t)+g(t,x(t-τ(t)))=p(t).By means of Schwarz’s inequality and Minkowski’s inequality and the coincidence degree theory,a new result on the existence of periodic solutions for the equations is obtained under some conditions.In the sufficient conditions of the existence of periodic solutions for the equations,the bounded function h(x) may not be required.

参考文献/References:

[1] 张莉, 王全义. 具有编差变元的二阶中定型泛函微分方程周期解 [J]. 华侨大学学报(自然科学版), 2007(4):437-440.doi:10.3969/j.issn.1000-5013.2007.04.027.
[2] POURNAKI M R, RAZANI A. On the existence of periodic solutions for a class of generalized forced liénard equations [J]. Applied Mathematics Letters, 2007(3):248-254.
[3] WANG Wei-bing, LUO Zhi-guo. Positive periodic solutions of second-order differential equations [J]. Applied Mathematics Letters, 2007(3):266-271.
[4] LIU Bing-wen, HUANG Li-hong. Periodic solutions for a kind of Rayleigh equation with a deviating argument [J]. Journal of Mathematical Analysis and Applications, 2006(2):491-500.doi:10.1016/j.jmaa.2005.08.070.
[5] 杜波, 鲁世平. 一类具偏差变元的二阶微分方程周期解 [J]. 数学研究, 2007(1):16-21.doi:10.3969/j.issn.1006-6837.2007.01.002.
[6] LU Shi-ping, GE Wei-gao. Sufficient conditions for the existence of periodic solutions to some second order differential equations with a deviating argument [J]. Journal of Mathematical Analysis and Applications, 2005(2):393-419.doi:10.1016/j.jmaa.2004.09.010.
[7] LU Shi-ping, GE Wei-gao. Existence of positive solutions for neutral population model with multiple delays [J]. Applied Mathematics and Computation, 2004(3):885-902.doi:10.1016/S0096-3003(03)00685-4.
[8] GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equation [M]. Beilin:Springer-Verlag, 1977.40-60.

相似文献/References:

[1]张上泰.一阶微分方程初值问题的单调叠代术[J].华侨大学学报(自然科学版),1990,11(4):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
 Zhang Shangtai.Monotone Iterative Technique for Initial Value Problems in First Order Differential Equations[J].Journal of Huaqiao University(Natural Science),1990,11(2):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
[2]王全义.关于概自守微分方程[J].华侨大学学报(自然科学版),1991,12(3):279.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
 Weng Quanyl.On Almost-Automorphic Differential Equations[J].Journal of Huaqiao University(Natural Science),1991,12(2):279.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
[3]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
 Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(2):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
[4]王全义.概周期微分方程的概周期解[J].华侨大学学报(自然科学版),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
 Wang Quanyi.Almost Periodic Solutions of Almost Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(2):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
[5]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
 Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[6]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
 Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(2):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[7]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
 Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[8]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
 Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(2):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[9]王全义.具有无限时滞的微积分方程的周期解的存在性与唯一性[J].华侨大学学报(自然科学版),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to the Integro-Differential Equation with infinite Time-Lag[J].Journal of Huaqiao University(Natural Science),1996,17(2):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
[10]王全义.一个造血模型周期解的存在性及唯一性[J].华侨大学学报(自然科学版),1997,18(1):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
 Wang Quanyi.Existence and Uniqueness of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(2):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
[11]陈应生.一类二阶具偏差变元微分方程周期解[J].华侨大学学报(自然科学版),2012,33(4):467.[doi:10.11830/ISSN.1000-5013.2012.04.0467]
 CHEN Ying-sheng.Periodic Solutions for a Class of Second Order Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2012,33(2):467.[doi:10.11830/ISSN.1000-5013.2012.04.0467]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(Z0511026)
更新日期/Last Update: 2014-03-23