参考文献/References:
[1] 张莉, 王全义. 具有编差变元的二阶中定型泛函微分方程周期解 [J]. 华侨大学学报(自然科学版), 2007(4):437-440.doi:10.3969/j.issn.1000-5013.2007.04.027.
[2] POURNAKI M R, RAZANI A. On the existence of periodic solutions for a class of generalized forced liénard equations [J]. Applied Mathematics Letters, 2007(3):248-254.
[3] WANG Wei-bing, LUO Zhi-guo. Positive periodic solutions of second-order differential equations [J]. Applied Mathematics Letters, 2007(3):266-271.
[4] LIU Bing-wen, HUANG Li-hong. Periodic solutions for a kind of Rayleigh equation with a deviating argument [J]. Journal of Mathematical Analysis and Applications, 2006(2):491-500.doi:10.1016/j.jmaa.2005.08.070.
[5] 杜波, 鲁世平. 一类具偏差变元的二阶微分方程周期解 [J]. 数学研究, 2007(1):16-21.doi:10.3969/j.issn.1006-6837.2007.01.002.
[6] LU Shi-ping, GE Wei-gao. Sufficient conditions for the existence of periodic solutions to some second order differential equations with a deviating argument [J]. Journal of Mathematical Analysis and Applications, 2005(2):393-419.doi:10.1016/j.jmaa.2004.09.010.
[7] LU Shi-ping, GE Wei-gao. Existence of positive solutions for neutral population model with multiple delays [J]. Applied Mathematics and Computation, 2004(3):885-902.doi:10.1016/S0096-3003(03)00685-4.
[8] GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equation [M]. Beilin:Springer-Verlag, 1977.40-60.
相似文献/References:
[1]张上泰.一阶微分方程初值问题的单调叠代术[J].华侨大学学报(自然科学版),1990,11(4):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
Zhang Shangtai.Monotone Iterative Technique for Initial Value Problems in First Order Differential Equations[J].Journal of Huaqiao University(Natural Science),1990,11(2):315.[doi:10.11830/ISSN.1000-5013.1990.04.0315]
[2]王全义.关于概自守微分方程[J].华侨大学学报(自然科学版),1991,12(3):279.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
Weng Quanyl.On Almost-Automorphic Differential Equations[J].Journal of Huaqiao University(Natural Science),1991,12(2):279.[doi:10.11830/ISSN.1000-5013.1991.03.0279]
[3]王全义.一类周期微分系统的同期解[J].华侨大学学报(自然科学版),1993,14(1):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
Wang Quanyi.Periodic Solutions for a Class of Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(2):12.[doi:10.11830/ISSN.1000-5013.1993.01.0012]
[4]王全义.概周期微分方程的概周期解[J].华侨大学学报(自然科学版),1993,14(3):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
Wang Quanyi.Almost Periodic Solutions of Almost Periodic Differential Systems[J].Journal of Huaqiao University(Natural Science),1993,14(2):283.[doi:10.11830/ISSN.1000-5013.1993.03.0283]
[5]王全义.纯量Volterra积分微分方程的周期解[J].华侨大学学报(自然科学版),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
Wang Quanyi.Periodic Solution of a Scalar Volterra Integrodifferential Equation[J].Journal of Huaqiao University(Natural Science),1994,15(2):127.[doi:10.11830/ISSN.1000-5013.1994.02.0127]
[6]王全义.一类高维周期系统的周期解[J].华侨大学学报(自然科学版),1994,15(4):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
Wang Quanyi.Periodic Solutions to One Class of Higher Dimensional Periodic Systems[J].Journal of Huaqiao University(Natural Science),1994,15(2):363.[doi:10.11830/ISSN.1000-5013.1994.04.0363]
[7]王全义.非线性周期系统的不稳定周期解[J].华侨大学学报(自然科学版),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
Wang Quanyi.Unstable Periodic Solutions of Nonlinear Periodic Systems[J].Journal of Huaqiao University(Natural Science),1995,16(2):121.[doi:10.11830/ISSN.1000-5013.1995.02.0121]
[8]王全义.纯量微分积分方程的周期解[J].华侨大学学报(自然科学版),1995,16(4):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
Wang Quanyi.Periodic Solutions of Scalar Integrodifferential Equations[J].Journal of Huaqiao University(Natural Science),1995,16(2):353.[doi:10.11830/ISSN.1000-5013.1995.04.0353]
[9]王全义.具有无限时滞的微积分方程的周期解的存在性与唯一性[J].华侨大学学报(自然科学版),1996,17(4):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
Wang Quanyi.Existence and Uniqueness of Periodic Solution to the Integro-Differential Equation with infinite Time-Lag[J].Journal of Huaqiao University(Natural Science),1996,17(2):336.[doi:10.11830/ISSN.1000-5013.1996.04.0336]
[10]王全义.一个造血模型周期解的存在性及唯一性[J].华侨大学学报(自然科学版),1997,18(1):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
Wang Quanyi.Existence and Uniqueness of Periodic Solution to a Hematopoiesis Model[J].Journal of Huaqiao University(Natural Science),1997,18(2):11.[doi:10.11830/ISSN.1000-5013.1997.01.0011]
[11]陈应生.一类二阶具偏差变元微分方程周期解[J].华侨大学学报(自然科学版),2012,33(4):467.[doi:10.11830/ISSN.1000-5013.2012.04.0467]
CHEN Ying-sheng.Periodic Solutions for a Class of Second Order Differential Equation with Deviating Arguments[J].Journal of Huaqiao University(Natural Science),2012,33(2):467.[doi:10.11830/ISSN.1000-5013.2012.04.0467]