[1]曹君艳,王全义.一类二阶微分方程两点边值问题的正解存在性[J].华侨大学学报(自然科学版),2010,31(1):113-117.[doi:10.11830/ISSN.1000-5013.2010.01.0113]
 CAO Jun-yan,WANG Quan-yi.The Existence of Positive Solutions for Second-Order Two-Point Boundary Value Problem[J].Journal of Huaqiao University(Natural Science),2010,31(1):113-117.[doi:10.11830/ISSN.1000-5013.2010.01.0113]
点击复制

一类二阶微分方程两点边值问题的正解存在性()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第31卷
期数:
2010年第1期
页码:
113-117
栏目:
出版日期:
2010-01-20

文章信息/Info

Title:
The Existence of Positive Solutions for Second-Order Two-Point Boundary Value Problem
文章编号:
1000-5013(2010)01-0113-05
作者:
曹君艳王全义
华侨大学数学科学学院
Author(s):
CAO Jun-yan WANG Quan-yi
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
Leggett-Williams不动点定理 两点边值问题 正解 存在性
Keywords:
Leggett-Williams fixed point theorem two-point boundary value problem positive solution existence
分类号:
O175.8
DOI:
10.11830/ISSN.1000-5013.2010.01.0113
文献标志码:
A
摘要:
利用Leggett-Williams不动点定理,研究一类二阶微分方程两点边值问题的正解存在性,获得此方程的边值问题存在3个正解的新结果.结果表明,其存在性的充分条件简单,且易于验证.
Abstract:
By using Leggett-Williams fixed point theorem,the authors studied the existence of positive solutions for a kind of second-order two-point boundary value problem.A new result of three positive solutions for the boundary value problem is obtained.

参考文献/References:

[1] 李永祥. 二阶非线性常微分方程正周期解 [J]. 数学学报, 2002(3):481-488.doi:10.3321/j.issn:0583-1431.2002.03.008.
[2] 姚庆六. 一类二阶三点非线性边值问题的正解存在性与多解性 [J]. 数学学报, 2002(6):1057-1064.doi:10.3321/j.issn:0583-1431.2002.06.003.
[3] ERBE L H, HU S, WANG H. Multiple positive solutions of some boundary value problems [J]. Journal of Mathematical Analysis and Applications, 1994.640-648.
[4] LIU Z, LI F. Multiple positive solutions of nonlinear two-point boundary value problem [J]. Journal of Mathematical Analysis and Applications, 1996.610-625.
[5] LI F Y, ZHANG Y J. Multiple symmetric nonnegative solutions of second-order ordinary differential equations [J]. Applied Mathematics Letters, 2004.261-267.
[6] SUN J P. Three positive solutions for second-order Neumann boundary value problems [J]. Applied Mathematics Letters, 2004.1079-1084.
[7] LI F Y, LIANG Z P, ZHANG Q. Existence of solutions to a class of nonlinear second order two-point boundary value problems [J]. Journal of Mathematical Analysis and Applications, 2005, (1):357-373.doi:10.1016/j.jmaa.2005.03.043.
[8] LEGGETT W, WILLIAMS L R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces [J]. Indiana University Mathematics Journal, 1979.673-688.
[9] 王全义. 具状态依赖时滞的泛函微分方程的周期解 [J]. 华侨大学学报(自然科学版), 2007(2):212-215.doi:10.3969/j.issn.1000-5013.2007.02.026.

相似文献/References:

[1]杨翔翔.热特性参数可变时环形肋片传热的最优化研究(Ⅱ) 不变插值原理及其应用[J].华侨大学学报(自然科学版),1987,8(4):452.[doi:10.11830/ISSN.1000-5013.1987.04.0452]
 Yang Xiangxiang.Optimization of Heat Transfer in Circular Fins with Various Thermal Parameters(Ⅱ) Principle of Invariant Imbedding and Its Application[J].Journal of Huaqiao University(Natural Science),1987,8(1):452.[doi:10.11830/ISSN.1000-5013.1987.04.0452]

备注/Memo

备注/Memo:
福建省自然科学基金资助项目(Z0511026)
更新日期/Last Update: 2014-03-23