[1]谢志春,黄心中.某些单叶调和函数类的解析特征[J].华侨大学学报(自然科学版),2009,30(6):704-708.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
 XIE Zhi-chun,HUANG Xin-zhong.On the Analytic Characteristic Properties for Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2009,30(6):704-708.[doi:10.11830/ISSN.1000-5013.2009.06.0704]
点击复制

某些单叶调和函数类的解析特征()
分享到:

《华侨大学学报(自然科学版)》[ISSN:1000-5013/CN:35-1079/N]

卷:
第30卷
期数:
2009年第6期
页码:
704-708
栏目:
出版日期:
2009-11-20

文章信息/Info

Title:
On the Analytic Characteristic Properties for Some Univalent Harmonic Functions
文章编号:
1000-5013(2009)06-0704-05
作者:
谢志春黄心中
华侨大学数学科学学院
Author(s):
XIE Zhi-chun HUANG Xin-zhong
School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
关键词:
单叶调和函数 星象函数 拟共形映照 凸像半径
Keywords:
univalent harmonic function starlike function quasiconformal mappings radius of convexity
分类号:
O174.55
DOI:
10.11830/ISSN.1000-5013.2009.06.0704
文献标志码:
A
摘要:
考虑单位圆内单叶调和函数的某些子类SH*(1λ,2λ; α),TSH*(1λ,2λ; α)的单叶解析性质,单叶性等价条件与拟共形映照之间的关系,以及该函数类中的凸像半径等问题,推广和改进ztürk与Jahangiri等人的相应结果.
Abstract:
The univalent analytic properties,equivalent conditions,the relationship between quasiconformal mappings and radius of convexity for some subclasses of univalent harmonic functions in the unit disk are investigated.Our results improve and extend the corresponding ones by ztürk and Jahangiri.

参考文献/References:

[1] CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions [J]. Ann Acad Sci I Math, 1984(1):3-25.
[2] 黄心中. 给定复伸张单叶调和映照的面积偏差 [J]. 华侨大学学报(自然科学版), 2007(2):208-211.doi:10.3969/j.issn.1000-5013.2007.02.025.
[3] 吴瑞溢, 黄心中. Salagean类单叶调和函数的特征 [J]. 华侨大学学报(自然科学版), 2008(2):308-311.
[4] SILVERMAN H, SILVIA E M. Subclasses of harmonic univalent functions [J]. New Zeal J Math, 1999(2):275-284.
[5] OZTURK M, YALCIN S, YAMANKARADENIZ M. A subclass of harmonic univalent functions with negative coefficients [J]. Applied Mathematics and Computation, 2003, (2/3):469-476.
[6] OZTURK M, YALCIN S, YAMANKARADENIZ M. Convex subclass of harmonic starlike functions [J]. Applied Mathematics and Computation, 2004(2):449-459.doi:10.1016/S0096-3003(03)00725-2.
[7] JAHANGIRI J M, SILVERMAN H. Harmonic close-to-convex mappings [J]. J Appl Math and Stochastic Analysis, 2002(1):23-28.
[8] JAHANGIRI J M. Harmonic functions starlike in the unit disk [J]. Journal on Mathematical Analysis, 1999(2):470-477.doi:10.1006/jmaa.1999.6377.

相似文献/References:

[1]陈跃庆.螺象函数之λ-幂的系数估计[J].华侨大学学报(自然科学版),1987,8(1):8.[doi:10.11830/ISSN.1000-5013.1987.01.0008]
 Chen Yueqing.Coefficient Estimates for λ-Powers of Spirallike Functions[J].Journal of Huaqiao University(Natural Science),1987,8(6):8.[doi:10.11830/ISSN.1000-5013.1987.01.0008]
[2]韩雪,黄心中.两类单叶调和函数的偏差估计[J].华侨大学学报(自然科学版),2008,29(4):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
 HAN Xue,HUANG Xin-zhong.Estimate on the Distortion for Two Classes of Harmonic Univalent Functions[J].Journal of Huaqiao University(Natural Science),2008,29(6):618.[doi:10.11830/ISSN.1000-5013.2008.04.0618]
[3]胡春英,黄心中.单叶调和函数及其反函数为调和拟共形的充要条件[J].华侨大学学报(自然科学版),2010,31(5):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
 HU Chun-ying,HUANG Xin-zhong.Necessary and Sufficient Condition that Univalent Harmonic Functions and Their Inverse Functions are Harmonic Quasiconformal Mappings[J].Journal of Huaqiao University(Natural Science),2010,31(6):586.[doi:10.11830/ISSN.1000-5013.2010.05.0586]
[4]胡春英,黄心中.某些单叶调和函数的稳定性[J].华侨大学学报(自然科学版),2011,32(4):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
 HU Chun-ying,HUANG Xin-zhong.Stability of Some Univalent Harmonic Functions[J].Journal of Huaqiao University(Natural Science),2011,32(6):453.[doi:10.11830/ISSN.1000-5013.2011.04.0453]
[5]胡春英,黄心中.非平凡双向单叶调和映照的微分方程[J].华侨大学学报(自然科学版),2012,33(1):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
 HU Chun-ying,HUANG Xin-zhong.On Differential Equations for Non-Trivial Bilateral Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2012,33(6):107.[doi:10.11830/ISSN.1000-5013.2012.01.0107]
[6]傅冬绵,黄心中.一类单叶调和函数的拟共形性质[J].华侨大学学报(自然科学版),2019,40(6):812.[doi:10.11830/ISSN.1000-5013.201903003]
 FU Dongmian,HUANG Xinzhong.On Quasiconformal Properties for One Set of Univalent Harmonic Mappings[J].Journal of Huaqiao University(Natural Science),2019,40(6):812.[doi:10.11830/ISSN.1000-5013.201903003]

备注/Memo

备注/Memo:
福建省自然科学基金项目(2008J0195)
更新日期/Last Update: 2014-03-23